» »

Как работает 3d принтер по металлу. Селективное лазерное спекание. Au, Ag - Золото, серебро и другие драгоценные металлы

25.09.2019

Объемная печать начала развиваться в середине XX века. В 1948 году американец Чарльз Халл (Charles Hull) изобрел технологию, которая получила название SLA (Stereolithography) , или стереолитография. Процесс основан на свойстве жидкого фотополимера отвердевать под лазерным излучением. Выращивание модели ведется аддитивным методом, рабочая площадка опускается на 0,05-0,15 мм и покрывается новым слоем фотополимеризующейся композиции, а лазерный луч засвечивает участки, соответствующие стенкам виртуальной детали, заставляя их отвердевать.

Чарльз Халл оформил патент на изобретение в 1986 году и основал компанию 3D Systems (крупнейший производитель отрасли до настоящего времени). Тогда еще не было понятия 3D печать, и машину назвали аппаратом для стереолитографии. Но это первое устройство, создавшее реальный объект по виртуальному образцу методом послойного выращивания. С того времени направление бурно развивается, делаются открытия, основываются компании. Появились лазерные и струйные принтеры для объемной печати, использующие в качестве сырья пластики, полимеры, биоматериалы, продукты питания, и, конечно, металлы.

Подавляющее большинство 3D принтеров по металлу – огромные модели весом более тонны. Они используются в промышленных целях и служат для выращивания деталей сложной геометрии, которые затруднительно изготовить литьем или механической обработкой. Цена такого 3d-принтера может достигать нескольких сотен тысяч долларов.

На 3D устройствах изготавливаются:

  • прототипы для тестирования и испытания деталей серийного производства;
  • индивидуальные медицинские имплантаты;
  • зубные коронки и мосты в стоматологии;
  • ювелирные изделия.

Существует несколько технологий 3D печати металлами и их сплавами. Одни из них успешно применяются для работы с разными материалами, а другие предназначены исключительно для выращивания металлических изделий.

Послойное наплавление и ламинирование

Самый популярный способ выращивания объемных моделей – технология FDM (Fused Deposition Modeling) , называемая также FFF (Fused Filament Fabrication) . Печать ведется методом послойного наложения расплавленного материала, поставляемого в виде нити . Использование здесь тугоплавких металлов невозможно, слишком высока температура, которую должен выдерживать экструдер принтера, но в филамент можно добавить какое-то количество металлического порошка. Один из таких материалов – BronzeFill – состоит из термопластика и бронзы. В процессе изготовления детали металл, естественно, не плавится, только основная составляющая нити. Благодаря содержанию бронзового порошка готовый предмет поддается полировке и выглядит как металлическое изделие, хотя прочность, и другие свойства модели, ограничиваются характеристиками пластика.

Технология LOM (Laminated Object Manufacturing) , или ламинирование, заключается в последовательном наложении друг на друга тонких листов, в частности, может быть использована металлическая фольга. В каждом слое лазером вырезается контур, соответствующий сечению прототипа на соответствующем уровне. Соединяются же листы между собой связующим веществом на клеевой основе. Визуально полученные изделия напоминают металлические, но их целостность зависит от возможностей клея.

Струйная 3D печать

Принтеры, работающие по этой технологии, используют любые материалы, которые могут быть превращены в порошок , в том числе металлы и их сплавы. Из струйной печатающей головки на тонкий слой композита поступает жидкое связующее вещество, которое скрепляет основной материал. Затем в рабочую зону подается новый слой порошка и выращивание продолжается. Распечатанное 3D принтером изделие по-прежнему нельзя назвать металлическим, ведь его прочность зависит от свойств полимера. Но такую деталь можно подвергнуть термической обработке, в процессе которой металлический порошок начинает спекаться, а связующее вещество выгорает. На этом этапе изготовления, хотя в составе модели исключительно металл, она крайне хрупка из-за своей пористости. Для повышения прочности проводят пропитку изделия бронзой. Несмотря на сложность и продолжительность работ цельнометаллическая модель, полученная таким способом, не обладает свойствами, позволяющими использовать ее в каких-то механизмах. Однако технология широко применяется для производства предметов очень сложной формы, к которым такие требования не предъявляются:

  • ювелирных изделий,
  • сувениров,
  • предметов интерьера.

Лазерное спекание порошковых материалов

Два метода 3D печати, разработанные разными компаниями, отличаются друг от друга техническими решениями, но приводят к одному результату: лазер принтера разогревает порошок до температуры, близкой к точке плавления, и спекает гранулы вместе для получения твердой структуры. По технологии SLS (Selective Laser sintering) , или выборочное (селективное) лазерное спекание, используется углекислотный лазер. Иногда для увеличения скорости работ конструкцией может быть предусмотрено два лазера. В качестве сырья используются порошки из полимеров, керамики, стекла, металлов. Часто гранула представляет собой ядро из металлического порошка, покрытое оболочкой из легкоплавкого материала. Чем ниже температура спекания – тем менее мощным может быть лазерный излучатель. Владелец патента – компания 3D Systems – в качестве сырья для своих принтеров серии sPro, работающих этому методу, заявляет прочные инженерные пластики.

Технология DMLS (Direct Metal Laser Sintering) , или прямое лазерное спекание металла, изобретена компанией EOS из Германии и позиционируется как способ спекания именно металлических порошков:

  • инструментальных и нержавеющих сталей,
  • титановых и никелевых сплавов,
  • легких металлов,
  • кобальт хрома.

Используются оптоволоконные лазеры 200 или 400 Вт, их мощность и количество зависит от комплектации конкретной модели принтера. Построение модели происходит в закрытой камере, наполненной инертным газом для предотвращения окисления металла. Кроме того, порошок подогревается до температуры, близкой к точке плавления. Линейка 3D принтеров компании EOS, использующих технологию DMLS, предназначена для промышленного производства, так же как и устройства серии ProX компании 3D Systems.

Лазерная и электронно-лучевая плавка

Металлы подвергаются не спеканию, а полной плавке до образования гомогенной массы по технологии SLM (Selective Laser Melting) , или селективное лазерное плавление. Компания Phenix Systems выпускает линейку принтеров Phenix PL, использующих этот метод. Устройства оснащены мощными иттербиевыми волоконными лазерами, позволяющими значительно повысить температуру луча. Самое существенное отличие от технологии SLS, что при лазерном плавлении структура полученной детали по своим свойствам практически не отличается от литых изделий.

По технологии EBM (Electron beam melting) , или электронно-лучевая плавка, место лазера занимают электронные излучатели, выращивание модели идет в глубоком вакууме при температурах до 1000°C. На этом методе основана работа 3D устройств компании Arcam, Швеция. Принтеры предназначены для промышленного производства ортопедических имплантатов, деталей аэрокосмической продукции, изделий из титановых сплавов и других материалов, требующих повышенной температуры для обработки.

Видео (Промышленный 3D принтер по металлу)

3D-печать металлами можно считать одним из наиболее заманчивых и технологически сложных направлений аддитивного производства. Попытки печати металлами предпринимались с ранних дней развития технологий 3D-печати, но в большинстве случаев упирались в технологическую несовместимость. В этом разделе мы рассмотрим технологии, опробованные для печати как композитными материалами, содержащими металлы, так и чистыми металлами и сплавами.

Струйная трехмерная печать (3DP)

Схема работы трехмерных струйных принтеров (3DP)

Струйная 3D-печать является не только одним из старейших методов аддитивного производства, но и одним из наиболее успешных в плане использования металлов в качестве расходных материалом. Однако необходимо сразу же пояснить, что это технология позволяет создавать лишь композитные модели ввиду технологических особенностей процесса. Фактически, этот метод позволяет создавать трехмерные модели из любых материалов, которые могут быть переработаны в порошок. Связывание же порошка осуществляется с помощью полимеров. Таким образом, готовые модели нельзя назвать полноценно «металлическими».

В то же время, существует возможность преобразования композитных моделей в цельнометаллические за счет термической обработки с целью выплавки или выжигания связующего материала и спекания металлических частиц. Получаемые таким образом модели не обладают высокой прочностью ввиду пористости. Увеличение прочности возможно за счет пропитки полученной цельнометаллической модели. Например, возможна пропитка стальной модели бронзой с получением более прочной конструкции.

Получаемые подобным образом модели, даже с металлической пропиткой, не используются в качестве механических компонентов ввиду относительно низкой прочности, но активно используются в ювелирной и сувенирной промышленности.

Печать методом ламинирования (LOM)


Схема работы 3D-принтеров, использующих технологию ламинирования (LOM)

3D-печать методом ламинирования подразумевает последовательное нанесение тонких листов материала с формированием за счет механической или лазерной резки и склеиванием для получения трехмерной модели.

В качестве расходного материала может использоваться и металлическая фольга.

Получаемые модели не являются полностью металлическими, так как их целостность основана на применении клея, связующего листы расходного материала.

Плюсом же данной технологии является относительная дешевизна производства и высокое визуальное сходство получаемых моделей с цельнометаллическими изделиями. Как правило, этот метод используется для макетирования.

Послойное наплавление (FDM/FFF)


Модель, изготовленная из BronzeFill до и после полировки

Наиболее популярный метод 3D-печати также не обошел стороной попытки использования металлов в качестве расходных материалов. К сожалению, попытки печати чистыми металлами и сплавами на данный момент не привели к значительным успехам. Использование тугоплавких металлов натыкается на вполне предсказуемые проблемы с выбором материалов для конструкции экструдеров, которые, по определению, должны выдерживать еще более высокие температуры.

Печать же легкоплавкими сплавами (например, оловом), возможна, но не дает достаточно качественной отдачи для практического применения.

Таким образом, в последнее время внимание разработчиков расходных материалов переключилось на композитные материалы по аналогии со струйной печатью. Типичным примером служит BronzeFill – композитный материал, состоящий из термопластика (детали не разглашаются, но, по всей видимости, используется PLA-пластик) и бронзового порошка. Получаемые модели имеют высокую визуальную схожесть с натуральной бронзой и даже поддаются шлифовке до глянца. К сожалению, физические и химические свойства готовых изделий ограничены параметрами связующего термопластика, что не позволяет классифицировать такие модели, как цельнометаллические.

Тем не менее, подобные материалы могут получить практическое применение не только в создании макетов, сувениров и предметов искусства, но и в промышленности. Так, эксперименты энтузиастов показали возможность создания проводников и экранирующих материалов с использованием термопластиков с металлическим наполнителем. Развитие этого направления может сделать возможной печать электронных плат.

Выборочное лазерное спекание (SLS) и прямое спекание металлов (DMLS)

Наиболее распространенный метод создания цельнометаллических трехмерных моделей подразумевает использование лазерных установок для спекания частиц металлического порошка. Данная технология именуется «выборочным лазерным спеканием » или SLS. Стоит отметить, что SLS используется не только для работы с металлами, но и с термопластиками в порошковом виде. Кроме того, металлические материалы зачастую покрываются более легкоплавкими материалами для снижения необходимой мощности лазерных излучателей. В таких случаях готовые металлические модели требуют дополнительного спекания в печах и пропитки для повышения прочности.

Разновидностью технологии SLS является метод прямого лазерного спекания металлов (DMLS) , ориентированный, как понятно из названия, на работу с чистыми металлическими порошками. Данные установки зачастую оснащаются герметичными рабочими камерами, наполняемыми инертным газом для работы с металлами, подверженными оксидации – например, с титаном. Кроме того, DMLS-принтеры в обязательном порядке применяют подогрев расходного материала до точки чуть ниже температуры плавления, что позволяет экономить на мощности лазерных установок и ускорять процесс печати.


Схема работы SLS, DLMS и SLM установок

Процесс лазерного спекания начинается с нанесения тонкого слоя подогретого порошка на рабочую платформу. Толщина наносимых слоев соответствует толщине одного слоя цифровой модели. Затем производится спекание частиц между собой и с предыдущим слоем. Изменение траектории движения лазерного луча производится с помощью электромеханической системы зеркал.

По завершении вычерчивания слоя лишний материал не удаляется, а служит опорой для последующих слоев, что позволяет создавать модели сложной формы, включая навесные элементы, без необходимости построения дополнительных опорных структур. Такой подход вкупе с высокой точностью и разрешением позволяет получать детали, практически не требующие механической обработки, а также цельные детали уровня геометрической сложности, недосягаемого традиционными производственными методами, включая литье.

Лазерное спекание позволяет работать с широким ассортиментом металлов, включая сталь, титан, никелевые сплавы, драгоценные материалы и др. Единственным недостатком технологии можно считать пористость получаемых моделей, что ограничивает механические свойства и не позволяет добиться прочности на уровне литых аналогов.

Выборочная лазерная (SLM) и электронно-лучевая плавка (EBM)

Несмотря на высокое качество моделей, получаемых лазерным спеканием, их практическое применение ограничивается сравнительно низкой прочностью ввиду пористости. Подобные изделия могут быть использованы для быстрого прототипирования, макетирования, производства ювелирных изделий и многих других задач, но малопригодны для производства деталей, способных выдерживать высокие нагрузки. Одним решением это проблемы стало преобразование технологии прямого лазерного спекания металлов (DMLS) в технологию аддитивного производства методом лазерной плавки (SLM) . Фактически, единственным принципиальным различием этих методов является степень термической обработки металлического порошка: технология SLM основана на полной плавке для получения гомогенных моделей, практически неотличимых по физическим и механическим свойствам от литых аналогов.


Пример титанового имплантата, полученного с помощью технологии электронно-лучевой плавки (EBM)

Параллельным методом, достигшим прекрасных результатов, стала электронно-лучевая плавка (EBM) . На данный момент существует лишь один производитель, создающий EBM-принтеры – шведская компания Arcam.

EBM позволяет достигать точности и разрешения, сравнимых с лазерной плавкой, но обладает определенными преимуществами. Так, использование электронных пушек позволяет избавиться от деликатных электромеханических зеркальных систем, используемых в лазерных установках. Кроме того, манипулирование электронными пучками с помощью электромагнитных полей возможно на скоростях, несравнимых более высоких по сравнению с электромеханическими системами, что вкупе с увеличением мощности позволяет добиться повышенной производительности без существенного усложнения конструкции. В остальном же, конструкция SLM и EBM-принтеров схожа с установками для лазерного спекания металлов.

Возможность работы с широким диапазонам металлов и сплавов позволяет создавать мелкие партии специализированных металлических деталей, практически не уступающих образцам, получаемым с помощью традиционных методов производства. При этом отсутствует необходимость создания дополнительных инструментов и инфраструктуры – таких как, литейные формы и печи. Соответственно, возможна значительная экономия при прототипировании или мелкосерийном производстве.

Установки для лазерной и электронно-лучевой плавки успешно используются для производства таких предметов, как ортопедические титановые протезы, лопатки газовых турбин и форсунки реактивных двигателей среди прочих.

Прямое лазерное аддитивное построение (CLAD)

Схема работы установок, использующих технологию CLAD

Не столько технология 3D-печати, сколько технология «3D-ремонта». Технология применяется исключительно на промышленном уровне ввиду сложности и относительно узкой специализации.

В основе CLAD лежит напыление металлического порошка на поврежденные детали с немедленной наплавкой с помощью лазера. Позиционирование «печатной головки» осуществляется по пяти осям: вдобавок к перемещению в трех плоскостях, головка обладает способностью изменять угол наклона и поворачиваться вокруг вертикальной оси, что позволяет работать под любым углом.

Подобные устройства зачастую используются для ремонта крупногабаритных изделий, включая производственный брак. Например, установки французской компании BeAM используются для ремонта авиационных двигателей и других сложных механизмов.

Полноценные установки CLAD предусматривают использование герметичной рабочей камеры с инертной атмосферой для работы с титаном и другими металлами и сплавами, поддающимися оксидации.

Произвольная электронно-лучевая плавка (EBFȝ)


Схема работы EBFȝ принтеров

Технология, разрабатываемая специалистами НАСА для применения в условиях невесомости. Так как отсутствие гравитации делает работу с металлическими порошками практически невозможной, технология EBFȝ подразумевает использование металлических нитей.

Процесс построения схож с 3D-печатью методом послойного наплавления (FDM), но с использованием электронно-лучевой пушки для плавки расходного материала.

Данная технология позволит создание металлических запасных частей на орбите, что позволит существенно сократить затраты на доставку частей и обеспечит возможность быстрого реагирования на внештатные ситуации.

На SLS-принтерах чаще всего печатают изделия из полиамидного порошка, отливая затем металлический аналог. Сперва конструктор проектирует модели в CAD-софте.

Затем 3D-оператор готовит машину к запуску. Полиамидный порошок закладывают в две емкости. Слои полиамида наносятся с интервалом в 30 секунд. Принтер спекает полиамидный порошок с помощью теплового лазера.

Процесс печати длится от 5 до 12 часов и зависит от размера детали. Принтер печатает как гладкие, так и рельефные поверхности. Готовые изделия из полиамида получаются прочными и функциональными. Производство автоматизировано и не требует присутствия человека.

На SLS-принтерах можно печатать пластиковые прототипы медицинских протезов. Конструктор моделирует протез на основе томографии. 3д-оператор печатает пластиковый протез, в который в последствии вносятся необходимые правки врачами, получая в результате конечный прототип.

На основе этого прототипа печатается итоговый металлический протез из титана. Такой имплантат не нужно обтачивать, так как он соответствует форме кости человека.

Точный ответ на вопрос, сколько стоит 3D принтер по металлу, можно получить только после того, как будет определена сфера его использования. Но следует сразу оговориться, что цена такого оборудования очень высокая, и используется оно в основном на крупных производствах.

Стоимость устройства, печатающего металлом

Совсем недавно можно было приобрести только промышленный 3D принтер по металлу. Цена устройства варьировалась от 30 000 000 до 40 000 000 рублей, а функционировало оно по принципу сварочного аппарата.

В настоящее время печатающий металлом 3D принтер стал доступен для обычных граждан. Потому что на рынке появились модели стоимостью от 350 000 до 500 000 рублей, с помощью которых печатается большой ассортимент продукции, в том числе и ювелирных изделий.

Цена домашнего оборудования

Можно найти домашний 3D принтер по металлу, стоимостью от 40 000 рублей, при работе использующий металлоглину. Пока с помощью подобного устройства можно производить только грубые изделия. Тем не менее, оборудование быстро окупает вложенные в его приобретение деньги.

Узнать сколько стоит 3D принтер по металлу, можно на сайтах специализированных интернет магазинов, которые не только помогут определиться со стоимостью устройства, но и дадут возможность сравнить характеристики различных моделей, наиболее подходящих для использования в выбранном направлении.

Чтобы принять правильное решение, какой купить 3D принтер по металлу в каждом конкретном случае, необходимо обращать внимание при выборе не только на стоимость устройства, но также на качество и функциональность модели. Специалисты рекомендуют людям, подбирающим домашнее оборудование для печати по металлу, дождаться тиражирования нового устройства Vader, которое по предварительным данным не будет стоить больше 50 000 рублей, обладая при этом высокой скоростью печати и отличным разрешением.

Материал для 3D принтера по металлу

Сегодня каждому пользователю доступен широкий ассортимент металлов для 3D печати. Например:

  • металлический порошок, изготовленный на бронзовой основе (DirectMetal 20);
  • сталь нержавеющая (StainlessSteel GP1);
  • мартенситно состаренная сталь (MaragingSteel MS1);
  • высокопрочный сплав из кобальта, молибдена и хрома (CobaltChrome MP1).

В металлические порошки добавляют фосфорное соединение, влияющее на поверхностное натяжение, а также на степень окисления расплава и его вязкость. Все компоненты можно приобрести в специализированных магазинах.

Конструкция, которая позволяет методом послойного нанесения слоев металла создавать всевозможные детали, называется 3D принтер по металлу.

Для начала, необходим будет компьютер, на который устанавливается специальная программа, помогающие создать виртуальное изображение предмета в трех проекциях, поделенное на цифровые слои.

В 3D принтер по металлу загружают порошок либо металл, которые в процессе работы разогреваются и выдавливаются из головки устройства, нанося слои.

Затем наносится следующий, пока изделие не будет готовым.

3D принтер по металлу позволяет создавать все, что угодно. При этом, получаемые изделия вполне выдерживают конкуренцию с создаваемыми обычными методами.

Отличием 3D технологии считается многофункциональность. Использоваться 3D принтер, печатающий металлом, может любителями, а также профессионалами.

Спектр применения очень разнообразен:

    изготовление металлических предметов сложнейших форм;

    имитация ковки с использованием дополнительных устройств и др.

Промышленные образцы 3D принтера для печати металлом справятся легко даже с созданием ракетных двигателей, которые от оригинала практически невозможно отличить. Это подтверждает, что пригодна данная технология для изготовления на принтере всевозможных форм и габаритов металлических предметов.

Разнообразие технологий

Распространение в наше время получили два вида технологий – струйная и лазерная. Объединяет их то, что «выращивание» предмета осуществляется путем последовательного создания слоев. Происходит это до тех пор, пока не получится на выходе принтера необходимый объект (технология аддитивная).

Но, разработчики принтеров на этом не остановились и работают над разработкой новых способов печати.

Струйная

Это наиболее старая технология. Важно знать, что ее применение подходит для композитных материалов, т.е. смеси полимеров и металлов. С ее помощью можно формировать на принтере самой различной формы трехмерные объекты.

Порошок, смешивающийся с полимерами, выступает в роли связующего, позволяя во время процесса сырью связываться. Получаемые этим методом детали не относятся к полностью металлическим.

В некоторых случаях предмет, созданный принтером из композита, переплавляется в металлический, но из-за пористости прочность такого изделия невысокая. Чтобы ее увеличить изделия пропитывают металлом (в частности бронзой). Из-за низких прочностных показателей, используется метод в основном в сувенирной промышленности.

Метод ламинирования

Этот способ состоит в поочередном нанесении на платформу металлических листов малой толщины. Формирование изделия заключается в склеивании фольгированных листов.

Объекты, получаемые рассматриваемым способом, нельзя на 100% считать металлическими, поскольку для создания целостности их используют клей.

К достоинствам способа относят:

    идентичность получаемого 3D предмета и макета;

    экономичность.

Применяют способ в макетировании.

Послойное наплавление

Исходным сырьем при создании предметов данным методом являются металлы с низкой температурой плавления. Металлы и их сплавы с высокой температурой плавления не применяют.

До полировки и после

Поэтому разработчики используют, как и при печати струйной, композитные материалы — BronzeFill, к примеру, состоящий из бронзового порошка и термической пластмассы. Предметы, изготовленные из него, отличаются близкой схожестью с оригинальной деталью и хорошей способностью к шлифованию.

Создаваемые по этой технологии объекты, тоже не относятся к цельнометаллическим.

Способ широко используется в промышленных масштабах для получения экранирующих материалов и необходимых для изготовления печатных плат проводников, позволяющих развивать эту область.

Плавка электронно-лучевая и лазерная

Детали, создаваемые методом плавки с помощью лазера, получаются хорошего качества, но, несмотря на это, используют их не широко из-за ухудшающей прочность пористости. Не могут применяться они там, где необходимо противостоять высокой нагрузке.

Изменить ситуацию можно, применив лазерное спекание, отличающееся от лазерной плавки большей температурой обработки. Оно дает возможность получения на принтере однородных изделий, слабо отличимых от аналогичных, полученных литьем.

Другим похожим способом является электронно-лучевое плавление. Принтеры для него производит фирма Arcam (Швеция).

Технология мало отличается от предшествующей, но имеет такие особенности:

    высокая скорость манипулирования электронным пучком;

    отсутствие зеркальных электромеханических комплексов.

Видео: печать деталей способом селективного лазерного спекания

Использование расходников, представленных металлами и их сплавами, позволяет получать металлические 3D предметы, печатаемые небольшими партиями и имеющие с оригиналами близкое сходство. Метод не нуждается в развитой инфраструктуре, благодаря чему является ресурсно- и финансово экономичным.

Применяют его достаточно активно в ортопедии для изготовления протезов, а также форсунок к реактивным двигателям и турбин.

Аддитивное лазерное построение (CLAD)

Используют эту технологию чаще для 3D ремонта, чем для печати трехмерной. Предназначена она только для промышленного использования.

Суть ее состоит в нанесении порошка на дефектные места, который затем подвергается обработке лазером.

Перемещаться головка способна в пяти направлениях, а также вращаться в вертикальной плоскости и изменять угол наклона, что открывает большие возможности.

Использовать CLAD возможно для восстановления крупных объектов, в которых обнаружен брак. Его успешно применяют во Франции для ремонта авиамоторов.

Электронно-лучевая плавка произвольная (EBF3)

Она популярна у сотрудников НАСА, поскольку с порошками в невесомости работать невозможна. Их заменили металлическими нитями. Для наплавления слоев потребуется электронно-лучевая пушка.

Испытания в невесомости

Детали для ремонта создаются прямо на орбите, поэтому отпадает необходимость доставлять их с Земли.

Средняя цена

Рынок сегодня заполнен большим ассортиментом принтеров 3D для дома и производства. Среди них немало 3D принтеров по металлу. Цена наиболее качественных конструкций для использования промышленного равна нескольким десяткам тысячам американских долларов, поэтому позволить себе их могут только крупные компании.

Понятно, что 3D принтер для дома имеют меньшую цену – порядка 10-15 тысяч рублей .

Можно, безусловно, найти и менее дорогие 3D принтеры, печатающие металлами, но соответственно с более низким качеством получаемых изделий.

Понимая это, разработчики работают над совершенствованием 3D принтеров по металлу, купить которые можно будет в ближайшее время.

Видео струйной 3D печати технологии по металлу:

Где купить 3Д принтеры и по каким ценам

Первая модель для построения изделий использует расплавленную нить полимерную из пластика ABS +, которая гарантирует невероятную точность и прочность готовой продукции. Чтобы получить красочное изделие, выбирают из девяти расцветок термопластика.

У конструкции 2 режима, которые отличаются толщиной образуемого слоя.

Это компактное устройство открытой конструкции, которое подойдет для индивидуального использования – дома, в офисе, школе и т.д. С его помощью создавать можно игрушки, аксессуары для домашнего пользования, макеты и пр. Модель относится к самой дешевой, но обеспечивает завидное качество и детализацию.

Малый вес – еще одно преимущество принтера. Составляет он 3,6 кг.

Еще один доступный по цене настольный девайс для использования в офисах, используемый для разнообразных целей. Для печати, как и первая модель, он использует ABS нить. Получаемые объекты характеризуются достаточно высокой механической устойчивостью и точностью, отличной визуализацией.

Подойдет новичкам и опытным специалистам.

Бюджетная миниатюрная модель для дома и школы, поставляется почти в собранном виде, поэтому к работе приступать можно сразу после распаковки.

Привлекательная и надежная модель, отличающаяся простой эксплуатацией, небольшими размерами. Объекты создаются из той же нити, что и первые — ABS. Способна формировать любой конфигурации фигуры с внутренними полостями и геометрией. Используется успешно не только в офисах, но и в промышленных производствах.

Заключение

Специалисты уверены, что за печатью 3D будущее и она может вытеснить существующие методы создания прототипов. Ученые усердно занимаются разработкой принтеров для металлургической, строительной, пищевой промышленностей, которые смогут улучшить качество нашей жизни, позволив каждому заняться производством металлических конструкций на дому.