» »

Сила кулоновского взаимодействия двух точечных зарядов. III. Основы электродинамики

30.09.2019

В 1785 г. французский физик Шарль Кулон экспериментально установил основной закон электростатики – закон взаимодействия двух неподвижных точечных заряженных тел или частиц.

Закон взаимодействия неподвижных электрических зарядов – закон Кулона – основной (фундаментальный) физический закон и может быть установлен только опытным путем. Ни из каких других законов природы он не вытекает.

Если обозначить модули зарядов через |q 1 | и |q 2 |, то закон Кулона можно записать в следующей форме:

\(~F = k \cdot \dfrac{|q_1| \cdot |q_2|}{r^2}\) , (1)

где k – коэффициент пропорциональности, значение которого зависит от выбора единиц электрического заряда. В системе СИ \(~k = \dfrac{1}{4 \pi \cdot \varepsilon_0} = 9 \cdot 10^9\) Н·м 2 /Кл 2 , где ε 0 – электрическая постоянная, равная 8,85·10 -12 Кл 2 /Н·м 2 .

Формулировка закона :

сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

Эту силу называют кулоновской .

Закон Кулона в данной формулировке справедлив только для точечных заряженных тел, т.к. только для них понятие расстояния между зарядами имеет определенный смысл. Точечных заряженных тел в природе нет. Но если расстояние между телами во много раз больше их размеров, то ни форма, ни размеры заряженных тел существенно, как показывает опыт, не влияют на взаимодействие между ними. В этом случае тела можно рассматривать как точечные.

Легко обнаружить, что два заряженных шарика, подвешенные на нитях, либо притягиваются друг к другу, либо отталкиваются. Отсюда следует, что силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела. Подобные силы называют центральными . Если через \(~\vec F_{1,2}\) обозначить силу действующую на первый заряд со стороны второго, а через \(~\vec F_{2,1}\) – силу, действующую на второй заряд со стороны первого (рис. 1), то, согласно третьему закону Ньютона, \(~\vec F_{1,2} = -\vec F_{2,1}\) . Обозначим через \(\vec r_{1,2}\) радиус-вектор, проведенный от второго заряда к первому (рис. 2), тогда

\(~\vec F_{1,2} = k \cdot \dfrac{q_1 \cdot q_2}{r^3_{1,2}} \cdot \vec r_{1,2}\) . (2)

Если знаки зарядов q 1 и q 2 одинаковы, то направление силы \(~\vec F_{1,2}\) совпадает с направлением вектора \(~\vec r_{1,2}\) ; в противном случае векторы \(~\vec F_{1,2}\) и \(~\vec r_{1,2}\) направлены в противоположные стороны.

Зная закон взаимодействия точечных заряженных тел, можно вычислить силу взаимодействия любых заряженных тел. Для этого тела нужно мысленно разбить на такие малые элементы, чтобы каждый из них можно было считать точечным. Складывая геометрически силы взаимодействия всех этих элементов друг с другом, можно вычислить результирующую силу взаимодействия.

Открытие закона Кулона – первый конкретный шаг в изучении свойств электрического заряда. Наличие электрического заряда у тел или элементарных частиц означает, что они взаимодействуют друг с другом по закону Кулона. Никаких отклонений от строгого выполнения закона Кулона в настоящее время не обнаружено.

Опыт Кулона

Необходимость проведения экспериментов Кулона была вызвана тем, что в середине XVIII в. накопилось много качественных данных об электрических явлениях. Возникла потребность дать им количественную интерпретацию. Поскольку силы электрического взаимодействия были относительно невелики, возникла серьезная проблема в создании метода, который позволил бы произвести замеры и получить необходимый количественный материал.

Французский инженер и ученый Ш. Кулон предложил метод измерения малых сил, который основывался на следующем экспериментальном факте, обнаруженном самим ученым: сила, возникающая при упругой деформации металлической проволоки, прямо пропорциональна углу закручивания, четвертой степени диаметра проволоки и обратно пропорциональна ее длине:

\(~F_{ynp} = k \cdot \dfrac{d^4}{l} \cdot \varphi\) ,

где d – диаметр, l – длина проволоки, φ – угол закручивания. В приведенном математическом выражении коэффициент пропорциональности k находился опытным путем и зависел от природы материала, из которого изготавливалась проволока.

Данная закономерность была использована в так называемых крутильных весах. Созданные весы позволили измерить ничтожно малые силы порядка 5·10 -8 Н.

Рис. 3

Крутильные весы (рис. 3, а) состояли из легкого стеклянного коромысла 9 длиной 10,83 см, подвешенного на серебряной проволоке 5 длиной около 75 см, диаметром 0,22 см. На одном конце коромысла располагался позолоченный бузиновый шарик 8 , а на другом – противовес 6 – бумажный кружок, смоченный в скипидаре. Верхний конец проволоки прикреплялся к головке прибора 1 . Здесь же имелся указатель 2 , с помощью которого отсчитывался угол закручивания нити по круговой шкале 3 . Шкала была проградуирована. Вся эта система размещалась в стеклянных цилиндрах 4 и 11 . В верхней крышке нижнего цилиндра имелось отверстие, в которое вставлялась стеклянная палочка с шариком 7 на конце. В опытах применялись шарики с диаметрами в пределах 0,45 – 0,68 см.

Перед началом эксперимента указатель головки устанавливался на нулевой отметке. Затем шарик 7 заряжался от предварительно наэлектризованного шарика 12 . При соприкосновении шарика 7 с подвижным шариком 8 происходило перераспределение заряда. Однако из-за того, что диаметры шариков были одинаковыми, одинаковыми были и заряды на шариках 7 и 8 .

Вследствие электростатического отталкивания шариков (рис. 3, б) коромысло 9 поворачивалось на некоторый угол γ (по шкале 10 ). С помощью головки 1 это коромысло возвращалось в исходное положение. По шкале 3 указатель 2 позволял определять угол α закручивания нити. Общий угол закручивания нити φ = γ + α . Сила же взаимодействия шариков была пропорциональна φ , т. е. по углу закручивания можно судить о величине этой силы.

При неизменном расстоянии между шариками (оно фиксировалось по шкале 10 в градусной мере) исследовалась зависимость силы электрического взаимодействия точечных тел от величины заряда на них.

Для определения зависимости силы от заряда шариков Кулон нашел простой и остроумный способ изменения заряда одного из шариков. Для этого он соединял заряженный шарик (шарики 7 или 8 ) с таким же по размерам незаряженным (шарик 12 на изолирующей ручке). Заряд при этом распределялся поровну между шариками, что и уменьшало исследуемый заряд в 2, 4 и т. д. раз. Новое значение силы при новом значении заряда опять определялось экспериментально. При этом выяснилось, что сила прямо пропорциональна произведению зарядов шариков :

\(~F \sim q_1 \cdot q_2\) .

Зависимость силы электрического взаимодействия от расстояния была обнаружена следующим образом. После сообщения шарикам заряда (он был у них одинаковый) коромысло отклонялось на некоторый угол γ . Затем поворотом головки 1 уменьшался этот угол до γ 1 . Общий угол закручивания φ 1 = α 1 + (γ - γ 1)(α 1 – угол поворота головки). При уменьшении углового расстояния шариков до γ 2 общий угол закручивания φ 2 = α 2 + (γ - γ 2) . Было замечено, что, если γ 1 = 2γ 2 , ТО φ 2 = 4φ 1 , т. е. при уменьшении расстояния в 2 раза сила взаимодействия возрастала в 4 раза. Во столько же раз увеличился момент силы, так как при деформации кручения момент силы прямо пропорционален углу закручивания, а значит, и сила (плечо силы оставалось неизменным). Отсюда вытекает вывод: сила взаимодействия двух заряженных шариков обратно пропорциональна квадрату расстояния между ними:

\(~F \sim \dfrac{1}{r^2}\) .

Литература

  1. Мякишев Г.Я. Физика: Электродинамика. 10-11 кл.: учеб. для углубленного изучения физики / Г.Я. Мякишев, А.З. Синяков, Б.А. Слободсков. – М.: Дрофа, 2005. – 476 с.
  2. Вольштейн С. Л. и др. Методы физической науки в школе: Пособие для учителя / С.Л. Вольштейн, С.В. Позойский, В.В. Усанов; Под ред. С.Л. Вольштейна. – Мн.: Нар. асвета, 1988. – 144 с.

Понятие электричества. Электризация. Проводники, полупроводники и диэлектрики. Элементарный заряд и его свойства. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции. Электрическое поле как проявления взаимодействия. Электрическое поле элементарного диполя.

Термин электричество происходит от греческого слова электрон (янтарь).

Электризацией называют процесс сообщения телу электрического

заряда. Этот термин ввел в 16 веке английский ученый и врач Джилберт.

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД – ЭТО ФИЗИЧЕСКАЯ СКАЛЯРНАЯ ВЕЛИЧИНА, ХАРАКТЕРИЗУЮЩАЯ СВОЙСТВА ТЕЛ ИЛИ ЧАСТИЦ ВСТУПАТЬ И ЭЛЕКТРОМАГНИТНЫЕ ВЗАИМОДЕЙСТВИЯ, И ОПРЕДЕЛЯЮЩАЯ СИЛУ И ЭНЕРГИЮ ЭТИХ ВЗВИМОДЕЙСТВИЙ.

Свойства электрических зарядов:

1.В природе существуют два типа электрических зарядов. Положительные (возникают на стекле потертом о кожу) и отрицательные(возникают на эбоните потертом о мех).

2. Одноименные заряды отталкиваются, разноименные притягиваются.

3. Электрический заряд НЕ СУЩЕСТВУЕТ БЕЗ ЧАСТИЦ НОСИТЕЛЕЙ ЗАРЯДА (электрон, протон, позитрон и др.).Например с электрона и др. элементарных заряженных частиц нельзя снять э/заряд.

4.Электрический заряд дискретен, т.е. заряд любого тела составляет целое кратное от элементарного электрического заряда е (е = 1,6 10 -19 Кл). Электрон (т е = 9,11 10 -31 кг) и протон (т р = 1,67 10 -27 кг ) являются соответственно носителями элементарных отрицательного и положительного зарядов.(Известны частицы с дробным электрическим зарядом: – 1/3 е и 2/3 е – это кварки и антикварки , но в свободном состоянии они не обнаружены).

5. Электрический заряд - величина релятивистски инвариантная , т.е. не зависит от системы отсчета, а значит, не зависит от того, движется этот заряд или покоится.

6. Из обобщения опытных данных установлен фундаментальный закон природы - закон сохранения заряда: алгебраическая сум-

ма электрических зарядов любой замкнутой системы (системы, не обменивающейся зарядами с внешними телами) остается неизменной, какие бы процессы ни происходили внутри этой системы.

Закон экспериментально подтвержден в 1843 г. английским физиком

М. Фарадеем ( 1791- 1867) и др., подтвержден рождением и аннигиляцией частиц и античастиц.

Единица электрического заряда (производная единица, так как определяется через единицу силы тока) - кулон (Кл): 1 Кл - электрический заряд,

проходящий через поперечное сечение проводника при силе тока 1 А за время 1с.

Все тела в природе способны электризоваться, т.е. приобретать электрический заряд. Электризация тел может осуществляться различными способами: соприкосновением (трением), электростатической индукцией

и др. Всякий процесс заряжения сводится к разделению зарядов, при котором на одном из тел (или части тела) появляется избыток положительного заряда, а на другом (или другой части тела) - избыток отрицательного заряда. Общее количество зарядов обоих знаков, содержащихся в телах, не изменяется: эти заряды только перераспределяются между телами.

Электризация тел возможна потому, что тела состоят из заряженных частиц. В процессе электризации тел могут перемещаться, находящиеся в свободном состоянии, электроны и ионы. Протоны остаются в ядрах.

В зависимости от концентрации свободных зарядов тела делятся на проводники, диэлектрики и полупроводники .

Проводники - тела, в которых электрический заряд может перемешаться по всему его объему. Проводники делятся на две группы:

1) проводники первого рода (металлы) - перенос в

них зарядов (свободных электронов) не сопровождается химическими

превращениями;

2) проводники второго рода (например, расплавленные соли, ра-

створы кислот) - перенос в них зарядов (положительных и отрицательных

ионов) ведет к химическим изменениям.

Диэлектрики (например, стекло, пластмассы) - тела, в которых практически отсутствуют свободные заряды.

Полупроводники (например, германий, кремний) занимают

промежуточное положение между проводниками и диэлектриками. Указанное деление тел является весьма условным, однако большое различие в них концентраций свободных зарядов обусловливает огромные качественные различия в их поведении и поэтому оправдывает деление тел на проводники, диэлектрики и полупроводники.

ЭЛЕКТРОСТАТИКА - наука о неподвижных зарядах

Закон Кулона.

Закон взаимодействия неподвижных точечных электрических зарядов

Экспериментально установлен в 1785 г. Ш. Кулоном с помощью крутильных весов.

подобных тем, которые использовались Г. Кавендишем для определения гравитационной постоянной (ранее этот закон был открыт Г. Кавендишем, однако его работа оставалась неизвестной более 100 лет).

Точечным зарядом, называется заряженное тело или частица, размерами которых можно пренебречь, по сравнению с расстоянием до них.

Закон Кулона: сила взаимодействия между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядам q 1 и q 2 , и обратно пропорциональна квадрату расстояния r между ними :

k - коэффициент пропорциональности, зависящий от выбора системы

В СИ

Величина ε 0 называется электрической постоянной; она относится к

числу фундаментальных физических постоянных и равна:

ε 0 = 8,85 ∙10 -12 Кл 2 /Н∙м 2

векторной форме закон Кулона в вакууме имеет вид:

где - радиус вектор, соединяющий второй заряд с первым, F 12 – сила, действующая со стороны второго заряда на первый.

Точность выполнения закона Кулона на больших расстояниях, вплоть до

10 7 м, установлена при исследовании магнитного поля с помощью спутников

в околоземном пространстве. Точность же его выполнения на малых расстояниях, вплоть до 10 -17 м, проверена экспериментами по взаимодействию элементарных частиц.

Закон Кулона в среде

Во всех средах сила кулоновского взаимодействия меньше по сравнению с силой взаимодействием в вакууме или воздухе. Физическая величина, показывающая во сколько раз сила электростатического взаимодействия в вакууме больше, чем в данной среде, называется диэлектрической проницаемостью среды и обозначается буквой ε.

ε = F в вакууме / F в среде

Закон кулона в общем виде в СИ:

Свойства Кулоновских сил.

1.Кулоновские силы - это силы центрального типа, т.к. направлены вдоль прямой, соединяющей заряды

Кулоновская сила является силой притяжения, если знаки зарядов разные и силой отталкивания, если знаки зарядов одинаковые

3. Длякулоновских сил справедлив 3 закон Ньютона

4.Кулоновские силы подчиняются принципу независимости или суперпозиции, т.к. сила взаимодействия между двумя точечными зарядами не изменятся при появлении вблизи других зарядов. Результирующая сила электростатического взаимодействия, действующая на данный заряд, равна векторной сумме сил взаимодействия данного заряда с каждым зарядом системы отдельно.

F= F 12 +F 13 +F 14 + ∙∙∙ +F 1 N

Взаимодействия между зарядами осуществляются посредством электрического поля. Электрическое поле – это особая форма существования материи, посредством которой осуществляется взаимодействие электрических зарядов. Электрическое поле проявляет себя тем, что на любой другой заряд внесенный в это поле оно действует с силой. Электростатическое поле создается неподвижными электрическими зарядами и распространяется в пространстве с конечной скоростью с.

Силовая характеристика электрического поля называется напряженностью.

Напряженностью электрического в некоторой точке называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку, к модулю этого заряда.

Напряженность поля точечного заряда q:

Принцип суперпозиции: напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряженностей электрических полей, создаваемых в этой точке каждым зарядом в отдельности (в отсутствие других зарядов).

Закон Кулона количественно описывает взаимодействие заряженных тел. Он является фундаментальным законом, то есть установлен при помощи эксперимента и не следует ни из какого другого закона природы. Он сформулирован для неподвижных точечных зарядов в вакууме. В реальности точечных зарядов не существует, но такими можно считать заряды, размеры которых значительно меньше расстояния между ними. Сила взаимодействия в воздухе почти не отличается от силы взаимодействия в вакууме (она слабее менее чем на одну тысячную).

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Ш. Кулоном в 1785 г. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами .

На основании многочисленных опытов Кулон установил следующий закон:

Сила взаимодействия двух неподвижных точечных электрических зарядов в вакууме прямо пропорциональна произведению их модулей и обратно пропорциональна квадрату расстояния между ними. Она направлена вдоль прямой, соединяющей заряды, и является силой притяжения, если заряды разноименные, и силой отталкивания, если заряды одноименные.

Если обозначить модули зарядов через |q 1 | и |q 2 |, то закон Кулона можно записать в следующей форме:

\[ F = k \cdot \dfrac{\left|q_1 \right| \cdot \left|q_2 \right|}{r^2} \]

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц.

\[ k=\frac{1}{4\pi \varepsilon _0} \]

Полная формула закона Кулона:

\[ F = \dfrac{\left|q_1 \right|\left|q_2 \right|}{4 \pi \varepsilon_0 \varepsilon r^2} \]

\(F \) - Сила Кулона

\(q_1 q_2 \) - Электрический заряд тела

\(r \) - Расстояние между зарядами

\(\varepsilon_0 = 8,85*10^{-12} \) - Электрическая постоянная

\(\varepsilon \) - Диэлектрическая проницаемость среды

\(k = 9*10^9 \) - Коэффициент пропорциональности в законе Кулона

Силы взаимодействия подчиняются третьему закону Ньютона: \(\vec{F}_{12}=\vec{F}_{21} \) . Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках.

Электрический заряд обычно обозначается буквами q или Q .

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

    Существует два рода электрических зарядов, условно названных положительными и отрицательными.

    Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

    Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Отметим, чтоб выполнялся закон Кулона необходимо 3 условия:

  • Точечность зарядов - то есть расстояние между заряженными телами много больше их размеров.
  • Неподвижность зарядов . Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд.
  • Взаимодействие зарядов в вакууме .

В Международной системе СИ за единицу заряда принят кулон (Кл) .

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А . Единица силы тока (Ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Пример 1

Задача

Заряженный шарик приводят в соприкосновение с точно таким же незаряженным шариком. Находясь на расстоянии \(r = 15 \) см, шарики отталкиваются с силой \(F = 1 \) мН. Каков был первоначальный заряд заряженного шарика?

Решение

При соприкосновении заряд разделится ровно пополам (шарики одинаковые).По данной силе взаимодействия можем определить заряды шариков после соприкосновения (не забудем, что все величины надо представить в единицах СИ – \(F = 10^{-3} \) Н, \(r = 0.15 \) м):

\(F = \dfrac{k\cdot q^2}{r^2} , q^2 = \dfrac{F\cdot r^2}{k} \)

\(k=\dfrac{1}{4\cdot \pi \cdot \varepsilon _0} = 9\cdot 10^9 \)

\(q=\sqrt{\dfrac{f\cdot r^2}{k} } = \sqrt{\dfrac{10^{-3}\cdot (0.15)^2 }{9\cdot 10^9} } = 5\cdot 10^8 \)

Тогда до соприкосновения заряд заряженного шарика был вдвое больше: \(q_1=2\cdot 5\cdot 10^{-8}=10^{-7} \)

Ответ

\(q_1=10^{-7}=10\cdot 10^{-6} \) Кл, или 10 мкКл.

Пример 2

Задача

Два одинаковых маленьких шарика массой по 0,1г каждый подвешены на непроводящих нитях длиной \(\displaystyle{\ell = 1\,{\text{м}}} \) к одной точке. После того как шарикам были сообщены одинаковые заряды \(\displaystyle{q} \) , они разошлись на расстояние \(\displaystyle{r=9\,{\text{см}}} \) . Диэлектрическая проницаемость воздуха \(\displaystyle{\varepsilon=1} \) . Определить заряды шариков.

Данные

\(\displaystyle{m=0,1\,{\text{г}}=10^{-4}\,{\text{кг}}} \)

\(\displaystyle{\ell=1\,{\text{м}}} \)

\(\displaystyle{r=9\,{\text{см}}=9\cdot 10^{-2}\,{\text{м}}} \)

\(\displaystyle{\varepsilon = 1} \)

\(\displaystyle{q} - ? \)

Решение

Поскольку шарики одинаковы, то на каждый шарик действуют одинаковые силы: сила тяжести \(\displaystyle{m \vec g} \), сила натяжения нити \(\displaystyle{\vec T} \)и сила кулоновского взаимодействия (отталкивания) \(\displaystyle{\vec F} \). На рисунке показаны силы, действующие на один из шариков. Поскольку шарик находится в равновесии, сумма всех сил, действующих на него, равна 0. Кроме того, сумма проекций сил на оси \(\displaystyle{OX} \) и \(\displaystyle{OY} \)равна 0:

\(\begin{equation} {{\mbox{на ось }} {OX} : \atop { \mbox{ на ось }} {OY} : }\quad \left\{\begin{array}{ll} F-T\sin{\alpha} & =0 \\ T\cos{\alpha}-mg & =0 \end{array}\right. \quad{\text{или}}\quad \left\{\begin{array}{ll} T\sin{\alpha} & =F \\ T\cos{\alpha} & = mg \end{array}\right. \end{equation} \)

Решим совместно эти уравнения. Разделив первое равенство почленно на второе, получим:

\(\begin{equation} {\mbox{tg}\,}= {F\over mg}\,. \end{equation} \)

Так как угол \(\displaystyle{\alpha} \) мал, то

\(\begin{equation} {\mbox{tg}\,}\approx\sin{\alpha}={r\over 2\ell}\,. \end{equation} \)

Тогда выражение примет вид:

\(\begin{equation} {r\over 2\ell}={F\over mg}\,. \end{equation} \)

Сила \(\displaystyle{F} \)по закону Кулона равна: \(\displaystyle{F=k{q^2\over\varepsilon r^2}} \). Подставим значение \(\displaystyle{F} \)в выражение (52):

\(\begin{equation} {r\over 2\ell}={kq^2\over\varepsilon r^2 mg}\, \end{equation} \)

откуда выразим в общем виде искомый заряд:

\(\begin{equation} q=r\sqrt{r\varepsilon mg\over 2k\ell}\,. \end{equation} \)

После подстановки численных значений будем иметь:

\(\begin{equation} q= 9\cdot 10^{-2}\sqrt{9\cdot 10^{-2}\cdot 1 \cdot 10^{-4}\cdot 9,8\over 2\cdot 9\cdot 10^9\cdot 1}\, {{\text{Кл}}}=6.36\cdot 10^{-9}\, {{\text{Кл}}}\,. \end{equation} \)

Предлагается самостоятельно проверить размерность для расчетной формулы.

Ответ: \(\displaystyle{q=6,36\cdot 10^{-9}\,{\text{Кл}}\,.} \)

Ответ

\(\displaystyle{q=6,36\cdot 10^{-9}\,{\text{Кл}}\,.} \)

Пример 3

Задача

Какую работу надо совершить, чтобы перенести точечный заряд \(\displaystyle{q=6\,{\text{нКл}}} \) из бесконечности в точку, находящуюся на расстоянии \(\displaystyle{\ell = 10\,{\text{см}}} \) от поверхности металлического шарика, потенциал которого \(\displaystyle{\varphi_{\text{ш}}=200\,{\text{В}}} \), а радиус \(\displaystyle{R = 2\,{\text{см}}} \)? Шарик находится в воздухе (считать \(\displaystyle{\varepsilon=1} \)).

Данные

\(\displaystyle{q=6\,{\text{нКл}}=6\cdot 10^{-9}\,{\text{Кл}}} \)\(\displaystyle{\ell=10\,{\text{см}}} \)\(\displaystyle{\varphi_{\text{ш}}=200\,{\text{В}}} \)\(\displaystyle{R=2\,{\text{см}}} \) \(\displaystyle{\varepsilon = 1} \) \(\displaystyle{A} \) - ?

Решение

Работа, которую необходимо совершить, чтобы перенести заряд из точки с потенциалом \(\displaystyle{\varphi_1} \) в точку с потенциалом \(\displaystyle{\varphi_2} \) , равна изменению потенциальной энергии точечного заряда, взятому с обратным знаком:

\(\begin{equation} A=-\Delta W_n\,. \end{equation} \)

Известно, что \(\displaystyle{A=-q(\varphi_2-\varphi_1) } \) или

\(\begin{equation} A=q(\varphi_1-\varphi_2) \,. \end{equation} \)

Поскольку точечный заряд первоначально находится на бесконечности, то потенциал в этой точке поля равен 0: \(\displaystyle{\varphi_1=0} \) .

Определим потенциал в конечной точке, то есть \(\displaystyle{\varphi_2} \) .

Пусть \(\displaystyle{Q_{\text{ш}}} \) – заряд шарика. По условию задачи потенциал шарика известен (\(\displaystyle{\varphi_{\text{ш}}=200\,{\text{В}}} \)) , тогда:

\(\begin{equation} \varphi_{\text{ш}}={Q_{\text{ш}}\over 4\pi\varepsilon_o\varepsilon R}\, \end{equation} \)

\(\begin{equation} {\text{откуда}}\quad Q_{\text{ш}}=\varphi_{\text{ш}}\cdot 4\pi\varepsilon_o\varepsilon R\,. \end{equation} \)

Значение потенциала поля в конечной точке с учетом:

\(\begin{equation} \varphi_2={Q_{\text{ш}}\over 4\pi\varepsilon_o\varepsilon(R+\ell) }= {\varphi_{\text{ш}}R\over (R+\ell) }\,. \end{equation} \)

Подставим в выражение значение \(\displaystyle{\varphi_1} \) и \(\displaystyle{\varphi_2} \) , после чего получим искомую работу:

\(\begin{equation} A=-q{\varphi_{\text{ш}}R\over (R+\ell) }\,. \end{equation} \)

В результате расчетов получим: \(\displaystyle{A=-2\cdot 10^{-7}\,{\text{Дж}}} \) .

Тогда модуль силы взаимодействия между соседними зарядами равен:

\(F = \dfrac{k\cdot q^2}{l^{2}_{1}} =\Delta l\cdot k_{pr} \)

Причем удлинение шнура равно: \(\Delta l = l \).

Откуда величина заряда равна:

\(q=\sqrt{\frac{4\cdot l^3\cdot k_{pr}}{k} } \)

Ответ

\(q=2\cdot l\cdot \sqrt{\frac{l\cdot k_{pr}}{k} } \)

Так же как в ньютоновой механике гравитационное взаимодействие всегда имеет место между телами обладающими массами, аналогичным образом в электродинамике электрическое взаимодействие свойственно телам, обладающим электрическими зарядами. Обозначается электрический заряд символом «q» или «Q».

Можно даже сказать, что понятие электрического заряда q в электродинамике чем-то схоже с понятием гравитационной массы m в механике. Но в отличие от гравитационной массы, электрический заряд характеризует свойство тел и частиц вступать в силовые электромагнитные взаимодействия, и эти взаимодействия, как вы понимаете, не являются гравитационными.

Электрические заряды

Человеческий опыт исследования электрических явлений содержит множество экспериментальных результатов, и все эти факты позволили физикам прийти к следующим однозначным выводам относительно электрических зарядов:

1. Электрические заряды бывают двух родов - условно их можно разделить на положительные и отрицательные.

2. От одного заряженного предмета к другому электрические заряды можно передавать: допустим, путем соприкосновения тел друг с другом - заряд между ними можно разделить. При этом электрический заряд вовсе не является обязательной составной частью тела: в различных условиях один и тот же предмет может обладать разным по величине и по знаку зарядом, либо заряд может отсутствовать. Таким образом, заряд не является чем-то неотъемлемым для носителя, и в то же самое время заряд не может существовать без носителя заряда.

3. В то время как гравитирующие тела всегда притягиваются друг к другу, электрические заряды могут как взаимно притягиваться, так и взаимно отталкиваться. Разноименные заряды взаимно притягиваются, одноименные - друг от друга отталкиваются.

Закон сохранения электрического заряда - фундаментальный закон природы, он звучит так: «алгебраическая сумма зарядов всех тел внутри изолированной системы остается постоянной». Это значит, что внутри замкнутой системы невозможно появление или исчезновение зарядов лишь одного знака.

Сегодня научная точка зрения такова, что изначально носители заряда - это элементарные частицы. Элементарные частицы нейтроны (электрически нейтральные), протоны (положительно заряженные) и электроны (заряженные отрицательно) образуют атомы.

Из протонов и нейтронов состоят ядра атомов, а электроны образуют оболочки атомов. Модули зарядов электрона и протона равны по величине элементарному заряду е, но по знаку заряды этих частиц противоположны между собой.

Что касается непосредственно взаимодействия электрических зарядов друг с другом, то в 1785 году французский физик Шарль Кулон экспериментально установил и описал этот основной закон электростатики, фундаментальный закон природы, ни из каких других законов не вытекающий. Ученый в своей работе изучал взаимодействие неподвижных точечных заряженных тел, и измерял силы их взаимного отталкивания и притяжения.

Кулон экспериментально установил следующее: "Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей и обратно пропорциональны квадрату расстояния между ними".

Это и есть формулировка Закона Кулона. И хотя точечных зарядов в природе не существует, только применительно к точечным зарядам и можно говорить о расстоянии между ними, в рамках данной формулировки Закона Кулона.

На самом же деле, если расстояния между телами сильно превосходят их размеры, то ни размер, ни форма заряженных тел, особо не повлияют на их взаимодействие, а значит тела для данной задачи справедливо можно будет считать точечными.

Рассмотрим такой пример. Подвесим на нитках пару заряженных шаров. Поскольку они как-то заряжены, то станут либо отталкиваться друг от друга, либо притягиваться друг к другу. Так как силы направлены вдоль прямой, соединяющей данные тела, - силы эти центральные.

Для обозначения сил, действующих со стороны каждого из зарядов на другой, запишем: F12 – сила действия второго заряда на первый, F21 – сила действия первого заряда на второй, r12 – радиус-вектор от второго точечного заряда к первому. Если заряды имеют одинаковый знак, то сила F12 будет сонаправлена радиусу-вектору, если же у зарядов разные знаки - F12 будет направлена противоположно радиусу-вектору.

При помощи закона взаимодействия точечных зарядов (Закона Кулона) можно теперь находить силу взаимодействия для любых точечных зарядов или точечных заряженных тел. Если же тела не точечные, то их мысленно разбивают на мелке элементы, каждый из которых можно было бы принять за точечный заряд.

После нахождения сил, действующих между всеми мелкими элементами, силы эти геометрически складывают, - находят результирующую силу. Элементарные частицы тоже взаимодействуют друг с другом согласно Закону Кулона, и по сей день не замечено никаких нарушений этого фундаментального закона электростатики.

В современной электротехнике нет области, где в том или ином виде не работал бы Закон Кулона. Начиная с электрического тока, заканчивая просто заряженным конденсатором. Особенно те области, которые касаются электростатики, - они на 100% связаны с Законом Кулона. Рассмотрим только несколько примеров.

Простейший случай - введение диэлектрика. Сила взаимодействия зарядов в вакууме всегда больше силы взаимодействия тех же зарядов в условиях, когда между ними расположен какой-то диэлектрик.

Диэлектрическая проницаемость среды - это как раз та величина, которая позволяет количественно определить значения сил, независимо от расстояния между зарядами и от их величин. Достаточно силу взаимодействия зарядов в вакууме разделить на диэлектрическую проницаемость внесенного диэлектрика - получим силу взаимодействия в присутствии диэлектрика.

Сложное исследовательское оборудование - ускоритель заряженных частиц. Базируется работа ускорителей заряженных частиц на явлении взаимодействия электрического поля и заряженных частиц. Электрическое поле совершает в ускорителе работу увеличивая энергию частицы.

Если рассмотреть здесь ускоряемую частицу как точечный заряд, а действие ускоряющего электрического поля ускорителя - как суммарную силу со стороны других точечных зарядов, то и в этом случае полностью соблюдается Закон Кулона. Магнитное поле лишь направляет частицу силой Лоренца, но не изменяет её энергии, только задаёт траекторию для движения частиц в ускорителе.

Защитные электротехнические сооружения. Важные электроустановки всегда оснащаются такой простой на первый взгляд вещью, как молниеотвод. А молниеотвод в своей работе тоже не обходится без соблюдения Закона Кулона. Во время грозы на Земле появляются большие индуцированные заряды - согласно Закону Кулона притягиваются в направлении грозового облака. На поверхности Земли возникает в результате сильное электрическое поле.

Напряжённость этого поля особенно велика возле острых проводников, и поэтому на заостренном конце молниеприемника зажигается коронный разряд - заряд из Земли стремится, повинуясь Закону Кулона, притянуться к противоположному заряду грозового облака.

Воздух вблизи молниеотвода в результате коронного разряда сильно ионизируется. Вследствие этого напряжённость электрического поля вблизи острия уменьшается (как и внутри любого проводника), индуцированные заряды не могут накапливаться на здании и вероятность возникновения молнии снижается. Если же молния, так случится, ударит в молниеотвод, то заряд просто уйдет в Землю, не повредит установку.

В электростатике одним из основополагающих является закон Кулона. Он применяется в физике для определения силы взаимодействия двух неподвижных точечных зарядов или расстояния между ними. Это фундаментальный закон природы, который не зависит ни от каких других законов. Тогда форма реального тела не влияет на величину сил. В этой статье мы расскажем простым языком закон Кулона и его применение на практике.

История открытия

Ш.О. Кулон в 1785 г. впервые экспериментально доказал взаимодействия описанные законом. В своих опытах он использовал специальные крутильные весы. Однако еще в 1773 г. было доказано Кавендишем, на примере сферического конденсатора, что внутри сферы отсутствует электрическое поле. Это говорило о том, что электростатические силы изменяются в зависимости от расстояния между телами. Если быть точнее — квадрату расстояния. Тогда его исследования не были опубликованы. Исторически сложилось так, что это открытие было названо в честь Кулона, аналогичное название носит и величина, в которой измеряется заряд.

Формулировка

Определение закона Кулона гласит: В вакууме F взаимодействия двух заряженных тел прямо пропорционально произведению их модулей и обратно пропорционально квадрату расстояния между ними.

Звучит кратко, но может быть не всем понятно. Простыми словами: Чем больший заряд имеют тела и чем ближе они находятся друг к другу, тем больше сила.

И наоборот: Если увеличить расстояние межу зарядами — сила станет меньше.

Формула правила Кулона выглядит так:

Обозначение букв: q — величина заряда, r — расстояние межу ними, k — коэффициент, зависит от выбранной системы единиц.

Величина заряда q может быть условно-положительной или условно-отрицательной. Это деление весьма условно. При соприкосновении тел она может передаваться от одного к другому. Отсюда следует, что одно и то же тело может иметь разный по величине и знаку заряд. Точечным называется такой заряд или тело, размеры которого много меньше, чем расстояние возможного взаимодействия.

Стоит учитывать что среда, в которой расположены заряды, влияет на F взаимодействия. Так как в воздухе и в вакууме она почти равна, открытие Кулона применимо только для этих сред, это одно из условий применения этого вида формулы. Как уже было сказано, в системе СИ единица измерения заряда — Кулон, сокращено Кл. Она характеризует количество электричества в единицу времени. Является производной от основных единиц СИ.

1 Кл = 1 А*1 с

Стоит отметить, что размерность 1 Кл избыточна. Из-за того что носители отталкиваются друг от друга их сложно удержать в небольшом теле, хотя сам по себе ток в 1А небольшой, если он протекает в проводнике. Например в той же лампе накаливания на 100 Вт течет ток в 0,5 А, а в электрообогревателе и больше 10 А. Такая сила (1 Кл) примерно равна действующей на тело массой 1 т со стороны земного шара.

Вы могли заметить, что формула практически такая же, как и в гравитационном взаимодействии, только если в ньютоновской механике фигурируют массы, то в электростатике — заряды.

Формула Кулона для диэлектрической среды

Коэффициент с учетом величин системы СИ определяется в Н 2 *м 2 /Кл 2 . Он равен:

Во многих учебниках этот коэффициент можно встретить в виде дроби:

Здесь Е 0 = 8,85*10-12 Кл2/Н*м2 — это электрическая постоянная. Для диэлектрика добавляется E — диэлектрическая проницаемость среды, тогда закон Кулона может применяться для расчетов сил взаимодействия зарядов для вакуума и среды.

С учетом влияния диэлектрика имеет вид:

Отсюда мы видим, что введение диэлектрика между телами снижает силу F.

Как направлены силы

Заряды взаимодействуют друг с другом в зависимости от их полярности — одинаковые отталкиваются, а разноименные (противоположные) притягиваются.

Кстати это главное отличие от подобного закона гравитационного взаимодействия, где тела всегда притягиваются. Силы направлены вдоль линии, проведенной между ними, называют радиус-вектором. В физике обозначают как r 12 и как радиус-вектор от первого ко второму заряду и наоборот. Силы направлены от центра заряда к противоположному заряду вдоль этой линии, если заряды противоположны, и в обратную сторону, если они одноименные (два положительных или два отрицательных). В векторном виде:

Сила, приложенная к первому заряду со стороны второго обозначается как F 12. Тогда в векторной форме закон Кулона выглядит следующим образом:

Для определения силы приложенной ко второму заряду используются обозначения F 21 и R 21 .

Если тело имеет сложную форму и оно достаточно большое, что при заданном расстоянии не может считаться точечным, тогда его разбивают на маленькие участки и считают каждый участок как точечный заряд. После геометрического сложения всех получившихся векторов получают результирующую силу. Атомы и молекулы взаимодействуют друг с другом по этому же закону.

Применение на практике

Работы Кулона очень важны в электростатике, на практике они применяется в целом ряде изобретений и устройств. Ярким примером можно выделить молниеотвод. С его помощью защищают здания и электроустановки от грозы, предотвращая тем самым пожар и выход из строя оборудования. Когда идёт дождь с грозой на земле появляется индуцированный заряд большой величины, они притягиваются в сторону облака. Получается так, что на поверхности земли появляется большое электрическое поле. Возле острия молниеотвода оно имеет большую величину, в результате этого от острия зажигается коронный разряд (от земли, через молниеотвод к облаку). Заряд от земли притягивается к противоположному заряду облака, согласно закону Кулона. Воздух ионизируется, а напряженность электрического поля уменьшается вблизи конца молниеотвода. Таким образом, заряды не накапливаются на здании, в таком случае вероятность удара молнии мала. Если же удар в здание и произойдет, то через молниеотвод вся энергия уйдет в землю.

В серьезных научных исследованиях применяют величайшее сооружение 21 века – ускоритель частиц. В нём электрическое поле выполняет работу по увеличению энергии частицы. Рассматривая эти процессы с точки зрения воздействия на точечный заряд группой зарядов, тогда все соотношения закона оказываются справедливыми.

Полезное