» »

Что находится внутри ядра клетки. Основные функции ядра в клетке состоят в. Количество ядер в одной клетке может быть разным

30.01.2024

Генетическая информация эукариотической клетки хранится в особой двумембранной органелле - ядре. В нём находится более 90 % ДНК.

Строение

Понятие, что такое ядро в биологии и какие функции оно выполняет, укрепилось в научной среде только в начале XIX века. Однако впервые ядро в клетках лосося наблюдал натуралист Антони ван Левенгук ещё в 1670-х годах. Термин предложил ботаник Роберт Броун в 1831 году.

Ядро - наиболее крупный органоид клетки (до 6 мкм), который состоит из трёх частей:

  • двойной мембраны;
  • нуклеоплазмы;
  • ядрышка.

Рис. 1. Внутреннее строение ядра.

Ядро отделяется от цитоплазмы двойной мембраной, имеющей поры, через которые осуществляется избирательный транспорт веществ в цитоплазму и обратно. Пространство между двумя оболочками называется перинуклеарным. Внутренняя оболочка выстелена изнутри ядерным матриксом, который играет роль цитоскелета и обеспечивает структурную поддержку ядра. Матрикс содержит ядерную ламину, отвечающую за формирование хроматина.

Под мембранной оболочкой находится вязкая жидкость, которая называется нуклеоплазмой или кариоплазмой.
Она содержит:

  • хроматин, состоящий из белка, ДНК и РНК;
  • отдельные нуклеотиды;
  • нуклеиновые кислоты;
  • белки;
  • воду;
  • ионы.

В соответствии с плотностью скручивания хроматин может быть двух видов:

ТОП-3 статьи которые читают вместе с этой

  • эухроматин - деконденсированный (разрыхлённый) хроматин в неделящемся ядре;
  • гетерохроматин - конденсированный (плотно скрученный) хроматин в делящемся ядре.

Часть хроматина всегда находится в скрученном состоянии, часть - в свободном.

Рис. 2. Хроматин.

Обычно гетерохроматин называют хромосомой. Хромосомы хорошо видны в микроскоп при митотическом делении клетки. Совокупность признаков хромосом (размер, форма, количество) называется кариотипом. В кариотип входят аутосомы и гоносомы. Аутосомы несут информацию о признаках живого организма. Гоносомы определяют пол.

Внешняя оболочка переходит в эндоплазматическую сеть или ретикулум (ЭПР), образуя складки. На поверхности мембраны ЭПР находятся рибосомы, отвечающие за биосинтез белка.

Ядрышко представляет собой плотную структуру без мембраны. По сути это уплотнённый участок нуклеоплазмы с хроматином. Состоит из рибонуклеопротеидов (РНП). Здесь происходит синтез рибосомной РНК, хроматина и нуклеоплазмы. Ядро может содержать несколько мелких ядрышек. Впервые ядрышко было открыто в 1774 году, но его функции стали известны лишь к середине ХХ века.

Рис. 3. Ядрышко.

Эритроциты млекопитающих и клетки ситовидных трубок растений не содержат ядра. Клетки поперечнополосатых мышц содержат несколько небольших ядер.

Функции

Основными функциями ядра являются:

  • контроль всех процессов жизнедеятельности клетки, в том числе синтез белков;
  • синтез некоторых белков, рибосом, нуклеиновых кислот;
  • хранение генетического материала;
  • передача ДНК следующим поколениям при делении.
4.6 . Всего получено оценок: 244.

Ядро - важнейшая составная часть клетки. Клеточное ядро содержит ДНК, т.е. гены, и, благодаря этому,выполняет две главные функции:

1)хранения и воспроизведения генетической информации

2)регуляции процессов обмена веществ, протекающих в клетке

Безъядерная клетка не может долго существовать, и ядро тоже не способно к самостоятельному_существованию, поэтому цитоплазма и ядро образуют взаимозависимую систему. Большинство клеток имеет одно ядро. Нередко можно наблюдать 2-3 ядра в одной например в клетках печени. Известны и многоядерные клетки, причем число ядер может достигать нескольких десятков. Форма ядра зависит большей частью от формы клетки, она может быть и совершенно неправильной. Различают ядра шаровидные, многолопастные. Впячивания и выросты ядерной оболочки значительно увеличивают поверхность ядра и тем самым усиливают связь ядерных и цитоплазматических структур и веществ.

Строение ядра

Ядро окружено оболочкой,которая состоит из двух мембран, имеющих типичное строение. Наружная ядерная мембрана с поверхности,обращенной в цитоплазму, покрыта рибосомами, внутренняя мембрана гладкая.

Ядерная оболочка-часть мембранной системы клетки.Выросты внешней ядерной мембраны соединяются с каналами эндоплазматической сети,образуя единую систему сообщающихся каналов.Обмен веществ между ядром и цитоплазмой осуществляется двумя основными путями.Во-первых,ядерная оболочка пронизана многочисленными порами,через которые происходит обмен молекулами между ядром и цитоплазмой.Во-вторых, вещества из ядра в цитоплазму и обратно могут попадать вследствии отшнуровывания впячиваний и выростов ядерной оболочки.Несмотря на активный обмен веществами между ядром и цитоплазмой, ядерная оболочка ограничивает ядерное содержимое от цитоплазмы,обеспечивая тем самым различия в химическом составе ядерного сока и цитоплазмы.Это необходимо для нормального функционирования ядерных структур.

Содержимое ядра подразделяют на ядерный сок,хроматин и ядрышко.

В живой клетке ядерный сок выглядит бесструктурной массой,заполняющей промежутки между структурами ядра.В состав ядерного сока входят различные белки,в том числе большенство ферментов ядра, белки хроматина и рибосомальные белки.В ядерном соке находятся также свободные нуклеотиды,необходимые для построения молекул ДНК и РНК,аминокислоты,все виды РНК, а также продукты деятельности ядрышка и хроматина,транспортируемые затем из ядра в цитоплазму.

Хроматином (то греч.chroma-окраска,цвет)называют глыбки, гранулы и сетевидные структуры ядра, интенсивно окрашивающиеся некоторыми красителями и отличаются по форме от ядрышка. Хроматин содержит ДНК и белки и представляет собой спирализованные и уплотненные участки хромосом Спирализованные участки хромосом в генетическом отношении неактивны.

Свою специфическую роль-передачу генетической информации-могут осуществлять только деспирализованные-раскрученные участки хромосом, которые в силу своей малой толщины не видны в световой микроскоп.

В делящихся клетках все хромосомысильно спирализуются, укорачиваются и приобретают компактные размеры и форму.Хромосомой называют самостоятельные ядерные структуры,имеющие плечи и первичную перетяжку.Форма хромосом зависит от положения так называемой первичной перетяжки, или центормеры,-области,к которой во время деления клетки(митоза)прикрепляются нити веретена деления. Центромера делит хромосому на два плеча. Расположение центромеры определяет три основных типа хромосом:

1)равноплечие-с плечами равной или почти равной длинны;

2)неравноплечие-с плечами неравной длинны;

3)палочковидные - с одним длинным и вторым очень коротким, иногда с трудом обнаруживаемым плечом. Выделяются еще точечные хромосомы с очень короткими плечами.

Изучение хромосом позволило установить следующие факты.

1.Во всех соматических клетках любого растительного или животного организма число хромосом одинаково.

2.Половые клетки всегда содержат двое меньше хромосом, чем соматические клетки данного вида организма.

3.У всех организмов, относящихся к одному виду, число хромосом в клетках одинаково.

Число хромосом не зависит от уровня организации и не всегда указывает на родство:одно и тоже число их может быть у очень далёких друг от друга систематических групп и может сильно отличаться у близких по происхождению видов.

Таким образом,само по себе число хромосом не является видоспецифическим признаком.Однако характеристика хромосомного набора в целом видоспецифична, т.е. свойственна только одному какому-то виду организмов растений растений или животных.

Совокупность количественных (число и размеры) и качественных (форма) признаковхромосомного набора соматической клетки называюткариотипом.

Число хромосом в кариотипе большинства видов живых организмов четное.Это объясняетя тем, что в соматических клетках находятся две одинаковые по форме и размеру хромосомы-одна из отцовского организма, вторая – из материнского. Хромосомы, одинаковые по форме и размеру и несущие одинаковые гены, называют гомологичными.

Хромосомный набор соматической клетки, в котором каждая хромосома имеет пару,носит название двойного или диплоидного и обозначается 2N. Количество ДНК, соответствующее диплоидному набору хромосом, обозначают 2C.

Из каждой пары гомологичных хромосом в половые клетки попадает только одна, и поэтому хромосомный набор гамет называют одинарным или гаплоидным. Кариотип таких клеток обозначается 2n1c.

Диплоидное число хромосом у животных и растений.

Вид организмов Число хромосом
Малярийный плазмодий 2
Сазан 104
Лошадиная аскарида 2
Человек 46
Плодовая мушка дрозофила 8
Ясень обыкновенный 46
Головная вошь 12
Шимпанзе 48
Шпинат 12
Таракан 48
Домашняя муха 12
Перец 48
Тритон 24
Домашняя овца 54>
Ель,сосна 24
Домашняя собака 78
Окунь 28
Голубь 80

После завершения деления клетки хромосомы диспирализуются, и в ядрах образовавшихся дочерних клеток снова становятся видимыми только тонкая сеточка и глыбки хроматина.

Третья характерная для клетки структура – ядрышко.Оно представляет собой плотное округлое тельце, погруженное в ядерный сок. В ядрах разных клеток, а также в ядре одной и той же клетки в зависимости от её функционального состояния число ядрышек может колебаться от 1 до 5-7 и более. Количество ядрышек может превышать число хромосомом в наборе; это происходит за счет избирательной редупликации генов, отвечающих за синтез р-РНК. Ядрышки есть только в неделящихся ядрах, во время митоза они исчезают вследствие спирализации хромосом и выхода всех ранее образованных рибосом в цитоплазму, а после завершения деления возникают вновь.

Ядрышко не является самостоятельной структурой ядра.Оно образуется вокруг участка хромосомы, в котором закодирована структура р-РНК. Этот участок хромосомы-ген-носит название ядрышкового организатора(ЯО), и на нем происходит синтез р-РНК.

Кроме накопления р-РНК, в ядрышке формируются субъединицы рибосом, которые потом перемещаются в цитоплазму и, объединяясь при участии катионов Ca2+, формируют целостностные рибосомы, способные принимать участие в биосинтезе белка.

Таким образом, ядрышко – это скопление р-РНК и рибосом на разных этапах формирования, в основе которого лежит участок хромосомы, несущий ген – ядрышковый организатор, заключающий наследственную информацию о структуре р –РНК.

ЯДРО КЛЕТКИ [nucleus (caryon) , LNH] - составная часть клетки, в которой сосредоточена основная масса ДНК, являющаяся носителем наследственной информации. Наличие оформленного ядра отличает эукариотные организмы (см.) от прокариотных организмов (см.), у которых аналогом ядра является структурно неотделенная от цитоплазмы (см.) кольцевая нить ДНК - нуклеоид.

Впервые ядро в яйцеклетке курицы наблюдал Я. Пуркинъе в 1825 году. Броун (R. Brown) в 1831 году установил, что ядро является неотъемлемой частью всех живых клеток. К концу 19 века сформировались представления о ядре как носителе наследственных свойств клетки. Создание хромосомной теории наследственности (см.), открытие матричной функции ДНК и расшифровка генетического кода (см.) привели к выработке современного взгляда на ключевую роль ядра в хранении, воспроизведении и реализации основной массы генетической информации клетки (см. Ген , Дезоксирибонуклеиновые кислоты , Наследственность).

В изучении структуры и функции ядра большую роль сыграли методы цитохим выявления ДНК, например, реакция Фейльгена (см. Дезоксирибонуклеиновые кислоты, гистохимические методы обнаружения в тканях), электронной микроскопии (см.), микрургии (см.), микрокиносъемки (см.), а также радиоизотопные и микро-электродные методы исследования (см.).

Клетка обычно содержит одно ядро, расположенное вблизи ее центра или в базальной части (в клетках желез, в высокопризматическом эпителии). Положение ядра в клетке фиксируется сетью фибриллярных структур, образующих цитоскелет (см. Цитоплазма). Такая фиксация допускает, в определенных пределах, вращательные и колебательные движения ядра. Двухъядерные и многоядерные клетки, как правило, образуются вследствие деления ядра без разделения цитоплазмы или же слияния клеток. Структуры, в которых в единой протоплазме содержится много (до нескольких сотен) ядер, называют симпластами (например, поперечнополосатые волокна миокарда).

Форма ядра чаще сферическая или эллипсоидная, в нек-рых клетках (напр., в лейкоцитах и инфузориях) ядра имеют неправильную форму (см. цветн. табл. к ст. Клетка , рис. 2-8). Диаметр ядра колеблется от 1 мкм (у некотрых простейших) до 1 мм (яйцеклетки некоторых животных). В клетках млекопитающих диаметр ядра равен 4-6 мкм. Соотношение объемов ядра и цитоплазмы - относительно постоянная величина для каждого типа клеток. В целом объем ядра является видовым признаком и зависит от содержания ДНК, белков и воды. При полиплоидизации хромосом (см. Мутация) или их политенизации (см. Хромосомы) объем ядер обычно увеличивается в геометрической прогрессии (правило Якоби). Вследствие содержания большого количества нуклеиновых кислот ядра клеток базофильны по окраске. В течение жизненного цикла клетки оформленные ядра сохраняются в интерфазе (см. Клетка). В период митоза ядро замещается конденсированными хромосомами, совокупность которые носит название «митотическое ядро». В период интерфазы в ядре клетки различают оболочку, ядрышко (см.), хроматин (см.), элементы структурного матрикса и различные гранулы и фибриллы. Гомогенное вещество, заполняющее пространство между этими структурами, называют ядерным соком, или кариолимфой.

Оболочка ядра является специализированной частью общей мембранной системы клетки. Она образована наружной и внутренней ядерными мембранами, каждая из которых имеет толщину около 8 нм. Мембраны разделены перинуклеарным пространством шириной около 25 нм (рис. 1), связанным с полостями эндоплазматического ретикулума (см.). На обращенной к цитоплазме поверхности наружной ядерной мембраны располагаются рибосомы. Наружная ядерная мембрана связана с мембранами эндоплазматического ретикулума.

Предполагают, что они могут развиваться друг из друга. Наружная ядерная мембрана образует также транспортные пузырьки, которые встраиваются в мембраны комплекса Гольджи. Нередко оболочка ядра образует выступы и инвагинацииг связывающие цитоплазматические структуры с ядерными; часть подобных инвагинаций может достигать поверхности ядрышка (см.).

Высокомолекулярные соединения (РНК), синтезирующиеся в ядре, транспортируются в цитоплазму через специальные поровые комплексы, или поросомы, ядерной оболочки. Типичная поросома представляет собой сложную систему белковых глобул и фибрилл. В месте расположения порового комплекса наружная и внутренняя ядерные мембраны сливаются, формируя так называемую аннулярную структуру диаметром 60 - 80 нм (рис. 1 и 2). По ее периферии с наружной и внутренней сторон расположено по 8 связанных между собой глобул диаметром около 25 нмг в центре поросомы расположена глобула диаметром 15-20 нм. Центральная глобула соединена с периферическими глобулами системой тонких фибрилл, образующих диафрагму порового комплекса. Внутри центральной глобулы предполагают наличие канала, через который из ядра в цитоплазму транспортируются молекулы РНК. Благодаря тому, что периферические глобулы выступают за пределы аннулярной структуры (рис. 3), общий диаметр поросомы достигает 120 нм.

Строение и число поровых комплексов варьирует в зависимости от типа клетки и ее функционального состояния; в клетках с высокой метаболической активностью поросомы могут занимать 25-50% поверхности ядра.

Оболочка и поровые комплексы образуют поверхностный аппарат ядра, осуществляющий двустороннее взаимодействие ядра и цитоплазмы. Непосредственно под оболочкой ядра клетки расположен слой плотного вещества толщиной около 180 нм - субмембранная плотная пластинка, являющаяся одним из элементов структурного матрикса ядра клетки. При митозе элементы плотной пластинки могут сохраняться на поверхности конденсированных хромосом.

С внутренней стороны плотная пластинка переходит в систему белковых фибрилл диаметром 2 нм, которые объединяются в фибриллы высших порядков диаметром до 20-30 нм, формируя вместе с плотной пластинкой структурный матрикс ядра. Белки структурного матрикса образуют основу ядрышка и, возможно, принимают участие в структурной организации и регуляции процессов синтеза и транспорта макромолекул внутри ядра.

Хромосомы (см.) в период интерфазы представлены хроматином (см.) - многокомпонентной структурой, в основе которой лежит комплекс ДНК с гистонами (см.). С помощью световой микроскопии можно идентифицировать только наиболее конденсированные участки хроматина - так называемый гетерохроматин. Декойденсированный невидимый в световой микроскоп хроматин, по-видимому, представляющий собой транскрибируемые в данный момент области хромосом (см. Транскрипция), называют эухроматином. По локализации различают несколько видов гетерохроматина - периферический, выявляемый по периферии ядра клетки, жоколоядрышковый, а также хромоцентры, или кариосомы,- скопления зерен и глыбок хроматина в отдельных участках кариоплазмы. В большинстве ядер клеток самок млекопитающих выявляются также тельца Барра, представляющие собой тетерохроматин одной из двух половых Х-хромосом, которая сохраняет конденсированное состояние в течение всей интерфазы (см. Половой хроматин). В связи с функциональными особенностями различают два типа гетерохроматина - конститутивный, или структурный, и факультативный. Конститутивный гетерохроматин постоянно находится в конденсированном состоянии. Предполагают, что он обеспечивает пространственную организацию хромосом и, возможно, участвует в регуляции активности генов (см. Ген). Факультативный гетерохроматин способен переходить в деконденсированное состояние и, по существу, представляет собой нетранскрибируемый в данный момент эухроматин.

Есть данные, что интерфазные хромосомы соединены определенными участками с плотной пластинкой и расположены в кариоплазме закономерно.

Ядрышки (см.) представляют собой зоны синтеза и накопления рибосомальных РНК в ядре.

В ядерном соке содержатся вода, белки (главным образом глобулины), липопротеиды и фосфопротеиды, нуклеотиды, неорганические соли и др., а также рибонуклеопротеиды и ферменты транскрипции и репликации ДНК (см. Полимеразы). Количество ядерного сока может изменяться в зависимости от функционального состояния клетки.

В клетке ядро и цитоплазма составляют неразрывное единство: ядро без цитоплазмы сохраняет жизнеспособность лишь на короткое время, безъядерные клетки (например, эритроциты млекопитающих) не делятся и живут ограниченный период времени. Экспериментальное удаление ядра ведет к гибели клетки; пересадка ядра может восстановить ее жизнеспособность. В ядре на матрицах ДНК синтезируются РНК, которые обеспечивают синтез белков в цитоплазме; этим определяется ход всех физиологических процессов в клетке. В свою очередь, цитоплазма обеспечивает жизнедеятельность ядра и равномерное распределение генетического материала между дочерними клетками (исключение составляют некоторые виды простейших, у которых аппарат деления полностью располагается внутри ядра).

Синтез РНК на матрицах хромосомных ДНК, или транскрипцию (см.), осуществляют три вида ферментов: РНК-полимераза I, обеспечивающая синтез рибосома льных РНК (см. Ядрышко); РНК-полимераза II,обеспечивающая синтез мРНК; РНК-полимераза III, обеспечивающая синтез всех 5S-PHK, как транспортной, так и рибосомной. Транскрибируемый хроматин находится в декон-денсированном состоянии. Предполагается, что деконденсация связана с действием негистоновых белков HMG14 и HMG17. Синтезирующиеся нити РНК объединяются с белками ядра в рибонуклеопротеидные комплексы (РНП). На электроно-граммах РНП выявляются в виде перихроматиновых фибрилл толщиной 3-5 нм, расположенных по периферии скоплений гетерохроматина, а также в виде окруженных светлым ореолом перихроматиновых гранул диаметром около 45 нм. Перихромати-новые гранулы, по-видимому, представляют собой готовые к выходу в цитоплазму молекулы РНП. В ядерном соке между скоплениями гетерохроматина встречаются группы интерхроматиновых гранул диаметром 20 - 25 нм и конгломераты фибрилл диаметром 40-60 нм. Предполагают, что эти гранулы и фибриллы также представляют собой РНП.

В ДНК хромосом закономерно чередуются транскрибируемые участки и нетранскрибируемые (спейсеры). В спейсерах расположены последовательности нуклеотидов, определяющие точку начала транскрипции (селекторы), эффективность транскрипции (модуляторы) и окончание транскрипции (терминаторы). Внутри транскрибируемых зон ДНК имеются также участки, не представленные в зрелой мРНК - интроны (см. Транскрипция).

В периоде Gx клеточного цикла (см. Клетка) хромосомы содержат двуспиральные цепи ДНК. Удвоение цепей ДНК - репликация (см.) происходит в периоде S. Репликация идет асинхронно в разных хромосомах и в разных участках одной хромосомы. Обычно вначале удваивается ДНК у хроматина, затем - гетерохроматина и в последнюю очередь - ДНК гетерохроматизированной Х-хромосомы. Ошибки в считывании информации при репликации ДНК обычно исправляются специальными ферментными системами репарации (см. Нуклеазы). Лишь небольшая часть ошибок может сохраняться и передаваться потомству клетки, что лежит в основе различного вида мутаций (см. Мутация). В ядре дробящихся бластомеров удвоение цепей ДНК протекает почти одновременно, и период S относительно краток. В более дифференцированных клетках асинхронность редупликации нарастает, и длительность периода S увеличивается. В ядрах некоторых клеток часть ДНК синтезируется в периоде G2, что имеет значение для мейоза (см.).

К началу периода G2 каждая хромосома состоит из двух хроматид, соединенных между собой в области центромеры (см. Хромосомы). В конце периода G2 начинается интенсивная конденсация хромосом, вследствие чего они становятся видимыми в световой микроскоп.

В конденсации, помимо гистонов, принимают участие белки структурного матрикса ядра - матриксины - и белковый фактор митотической конденсации хромосом, синтезируемый в цитоплазме. При необходимости особо плотной упаковки ДНК (например, в сперматозоидах) гистоны ядра заменяются еще более щелочными белками - протаминами и цистеинпротаминами.

После завершения периода G2 клетка вступает в митоз (см.), являющийся основным способом равномерного распределения генетического материала ядра между дочерними клетками.

Нарушения числа и структуры хромосом половых клеток приводят либо к утрате этими клетками способности к оплодотворению (см.), либо к развитию наследственных заболеваний (см. Наследственные болезни , Хромосомные болезни). Развивающиеся при действии ряда факторов (проникающее излучение, высокая температура, некоторые вирусные инфекции) изменения числа и структуры хромосом соматических клеток (например, лейкоцитов), как правило, ведут к гибели пораженных клеток с элиминацией их системой иммунологического контроля организма (см. Иммунитет). В некоторых случаях нарушения регуляции процессов репродукции могут привести к опухолевому росту и к малигнизации клеток (см. Опухоли).

При дифференцировке клеток, их старении, а также в условиях патологии может изменяться степень конденсации хроматина. При активизации или подавлении специфической функции клетки наблюдаются так называемое функциональное набухание или сморщивание ядра с сохранением его структуры. При некоторых вирусных инфекциях (герпес, корь, полиомиелит, аденовирусная инфекция) в ядрах пораженных клеток появляются специфические вирусные включения.

В зависимости от характера, интенсивности и продолжительности действия повреждающего агента, патологические изменения ядра могут быть обратимыми (см. Паранекроз) или необратимыми (см. Некроз). Конденсация хроматина в крупные плотные глыбки или в единую компактную массу с исчезновением ядрышка Называется кариопикнозом (см. Пикноз). Это явление наблюдается не только при патологии, но и в обычных физиологических условиях, например, при дифференцировке эритробластов костного мозга. Как правило, кариопикноз необратим, хотя в условиях эксперимента наблюдали восстановление исходных структуры и функции пикнотизированных ядер при их переносе в цитоплазму малодифференцированных клеток. К тяжелым необратимым изменениям ядра, сопряженным с гибелью клетки, относятся кариорексис - распад ядер-на отдельные плотные глыбки - и кариолизис (кариолиз) - выход содержимого ядра в цитоплазму с его последующим растворением. Пикноз, рексис и лизис ядра в настоящее время рассматриваются как последовательные стадии его разрушения; в их основе лежит активация клеточных гидролаз, в первую очередь, рибонуклеаз и дезоксирибонуклеаз, приводящая к деполимеризации нуклеиновых кислот. Патологические изменения ядра могут возникать также в результате его отека - избыточного накопления жидкости в ядерном соке, что может привести к разрыву оболочки ядра.

Библиогр.: Беридзе Т. Г. Сателлит-ные ДНК, М., 1982; Клеточное ядро, Морфология, физиология и биохимия, под ред. И. Б. Збарского и Г. П. Георгиева, М., 1972; Клеточное ядро и его ультраструктуры, под ред. И. Б. Збарского, М., 1970; Метаболизм клеточного ядра и ядерно-ци-то плазматические отношения, под ред. В. П. Зосимовича и др., Киев, 1970; Me ц~ лер Д. Э. Биохимия, Химические реакции в живой клетке, пер. с англ., т. 1-3, М., 1980; Свенсон К. и Уэбстер П. JI. Клетка, пер. с англ., М., 1980; Стент Г. С. и Кэлин-д а р Р. Молекулярная генетика, пер. с англ., М., 1981; Ченцрв Ю. С. и Поляков В. Ю. Ультраструктура клеточного ядра, М., 1974, библиогр.; Alberts В. а. о. Molecular biology of the cell, N. Y. - L.. 1983; The cell nucleus, ed. by H. Busch, v. 1-4, N. Y.- L., 1974.-1978. См. также библиогр. к ст. Клетка .

Ядро клетки - это одна из основных составных частей всех растительных и животных клеток, неразрывно связанная с обменом, передачей наследственной информации и др.

Форма ядра клетки варьирует в зависимости от типа клетки. Имеются овальные, шаровидные и неправильной формы - подковообразные или многолопастные ядро клетки (у лейкоцитов), четковидные ядра клетки (у некоторых инфузорий), разветвленные ядра клетки (в железистых клетках насекомых) и др. Величина ядра клетки различна, но обычно связана с объемом цитоплазмы. Нарушение этого соотношения в процессе роста клетки приводит к клеточному делению. Количество ядер клетки также неодинаково - большинство клеток имеет одно ядро, хотя встречаются двуядерные и многоядерные клетки (например, некоторые клетки печени и костного мозга). Положение ядра в клетке является характерным для клеток каждого типа. В зародышевых клетках ядро обычно находится в центре клетки, но может смещаться по мере развития клетки и образования в цитоплазме специализированных участков или отложения в ней резервных веществ.

В ядре клетки различают основные структуры: 1) ядерную оболочку (ядерную мембрану), через поры которой осуществляется обмен между ядром клетки и цитоплазмой [имеются данные, указывающие на то, что ядерная мембрана (состоящая из двух слоев) без перерыва переходит в мембраны эндоплазматической сети (см. ) и комплекса Гольджи]; 2) ядерный сок, или кариоплазму,- полужидкую, слабо окрашиваемую плазматическую массу, заполняющую все ядра клетки и содержащую в себе остальные компоненты ядра; 3) (см.), которые в неделящемся ядре видны только с помощью специальных методов микроскопии (на окрашенном срезе неделящейся клетки хромосомы обычно имеют вид неправильной сети из темных тяжей и зернышек, в совокупности называемых ); 4) одно или несколько сферических телец - ядрышек, являющихся специализированной частью ядра клетки и связанных с синтезом рибонуклеиновой кислоты и белков.

Ядро клетки обладает сложной химической организацией, в которой важнейшую роль играют нуклеопротеиды - продукт соединения с белками. В жизни клетки имеются два основных периода: интерфазный, или метаболический, и митотический, или период деления. Оба периода характеризуются главным образом изменениями в строении ядра клетки. В интерфазе ядро клетки находится в покоящемся состоянии и участвует в синтезе белков, регуляции формообразования, процессах секреции и других жизненных отправлениях клетки. В период деления в ядре клетки происходят изменения, приводящие к перераспределению хромосом и образованию дочерних ядер клетки; наследственная информация передается, таким образом, через ядерные структуры новому поколению клеток.

Ядра клетки размножаются только делением, при этом в большинстве случаев делятся и сами клетки. Обычно различают: прямое деление ядра клетки путем перешнуровки - амитоз и самый распространенный способ деления ядер клетки- типичное непрямое деление, или митоз (см.).

Действие ионизирующей радиации и некоторых других факторов способно изменять заключенную в ядре клетки генетическую информацию, приводя к различным изменениям ядерного аппарата, что иногда может приводить к гибели самих клеток или служить причиной наследственных аномалий у потомства (см. Наследственность), Поэтому изучение структуры и функций ядра клетки, особенно связей между хромосомными соотношениями и наследованием признаков, которыми занимается цитогенетика, имеет существенное практическое значение для медицины (см. ).

См. также Клетка.

Ядро клетки - важнейшая составная часть всех растительных и животных клеток.

Клетка, лишенная ядра или с поврежденным ядром, не способна нормально выполнять свои функции. Ядро клетки, точнее, организованная в его хромосомах (см.) дезоксирибонуклеиновая кислота (ДНК),- носитель наследственной информации, определяющей все особенности клетки, тканей и целого организма, его онтогенез и свойственные организму нормы реагирования на воздействия среды. Заключенная в ядре наследственная информация закодирована в составляющих хромосомы молекулах ДНК последовательностью четырех азотистых оснований: аденина, тимина, гуанина и цитозина. Эта последовательность является матрицей, определяющей структуру синтезируемых в клетке белков.

Даже самые незначительные нарушения структуры ядра клетки ведут к необратимым изменениям свойств клетки или к ее гибели. Опасность ионизирующих излучений и многих химических веществ для наследственности (см.) и для нормального развития плода имеет в своей основе повреждения ядер в половых клетках взрослого организма или в соматических клетках развивающегося эмбриона. В основе преобразования нормальной клетки в злокачественную также лежат определенные нарушения структуры ядра клетки.

Размеры и форма ядра клетки и соотношение его объема и объема всей клетки характерны для различных тканей. Одним из главных признаков, отличающих элементы белой и красной крови, являются форма и размер их ядер. Ядра лейкоцитов могут быть неправильной формы: изогнуто-колбасовидной, лапчатой или четковидной; в последнем случае каждый участок ядра соединен с соседним тонкой перемычкой. В зрелых мужских половых клетках (сперматозоидах) ядро клетки составляет подавляющую часть всего объема клетки.

Зрелые эритроциты (см.) человека и млекопитающих не имеют ядра, так как они теряют его в процессе дифференцировки. Они имеют ограниченный срок жизни и не способны размножаться. В клетках бактерий и сине-зеленых водорослей отсутствует резко очерченное ядро. Однако в них содержатся все характерные для ядра клетки химические вещества, распределяющиеся при делении по дочерним клеткам с такой же правильностью, как и в клетках высших многоклеточных организмов. У вирусов и фагов ядро представлено единственной молекулой ДНК.

При рассмотрении покоящейся (неделящейся) клетки в световом микроскопе ядро клетки может иметь вид бесструктурного пузырька с одним или несколькими ядрышками. Ядро клетки хорошо красится специальными ядерными красками (гематоксилин, метиленовый синий, сафранин и др.), которые обычно используют в лабораторной практике. При помощи фазово-контрастного устройства ядро клетки можно исследовать и прижизненно. В последние годы для изучения процессов, протекающих в ядре клетки, широко используют микрокинематографию, меченые атомы С14 и Н3 (ауторадиография) и микроспектрофотометрию. Последний метод особенно успешно применяют для изучения количественных изменений ДНК в ядре в процессе жизненного цикла клетки. Электронный микроскоп позволяет выявить детали тонкой структуры ядра покоящейся клетки, необнаруживаемые в оптическом микроскопе (рис. 1).

Рис. 1. Современная схема строения клетки, основанная на наблюдениях в электронном микроскопе: 1 - цитоплазма; 2 - аппарат Гольджи; 3 - центросомы; 4 - эндоплазматический ретикулум; 5 - митохондрии; 6 - оболочка клетки; 7 - оболочка ядра; 8 - ядрышко; 9 - ядро.


При делении клеток - кариокинезе или митозе (см.) - ядро клетки претерпевает ряд сложных преобразований (рис. 2), во время которых становятся отчетливо видимыми его хромосомы. Перед делением клетки каждая хромосома ядра синтезирует из веществ, присутствующих в ядерном соке, себе подобную, после чего материнская и дочерняя хромосомы расходятся к противоположным полюсам делящейся клетки. В результате каждая дочерняя клетка получает такой же хромосомный набор, какой был у материнской клетки, а вместе с ним и заключенную в нем наследственную информацию. Митоз обеспечивает идеально правильное разделение всех хромосом ядра на две равнозначные части.

Митоз и мейоз (см.) являются важнейшими механизмами, обеспечивающими закономерности явлений наследственности. У некоторых простейших организмов, а также в патологических случаях в клетках млекопитающих и человека ядра клетки делятся путем простой перетяжки, или амитоза. В последние годы показано, что и при амитозе происходят процессы, обеспечивающие разделение ядра клетки на две равнозначные части.

Набор хромосом в ядре клетки особи называют кариотипом (см.). Кариотип во всех клетках данной особи, как правило, одинаков. Многие врожденные аномалии и уродства (синдромы Дауна, Клайнфелтера, Тернера-Шерешевского и др.) обусловлены различными нарушениями кариотипа, возникшими либо на ранних стадиях эмбриогенеза, либо при созревании половой клетки, из которой возникла аномальная особь. Аномалии развития, связанные с видимыми нарушениями хромосомных структур ядра клетки, называют хромосомными болезнями (см. Наследственные болезни). Различные повреждения хромосом могут быть вызваны действием физических или химических мутагенов (рис. 3). В настоящее время методы, позволяющие быстро и точно устанавливать кариотип человека, используют для ранней диагностики хромосомных болезней и для уточнения этиологии некоторых заболеваний.


Рис. 2. Стадии митоза в клетках культуры ткани человека (перевиваемый штамм НЕр-2): 1 - ранняя профаза; 2 - поздняя профаза (исчезновение ядерной оболочки); 3 - метафаза (стадия материнской звезды), вид сверху; 4 - метафаза, вид сбоку; 5 - анафаза, начало расхождения хромосом; 6 - анафаза, хромосомы разошлись; 7 - телофаза, стадия дочерних клубков; 8 - телофаза и разделение клеточного тела.


Рис. 3. Повреждения хромосом, вызываемые ионизирующей радиацией и химическими мутагенами: 1 - нормальная телофаза; 2-4 - телофазы с мостами и фрагментами в эмбриональных фибробластах человека, облученных рентгеновыми лучами в дозе 10 р; 5 и 6 - то же в кроветворных клетках морской свинки; 7 - хромосомный мост в эпителии роговицы мыши, облученной дозой в 25 р; 8 - фрагментация хромосом в эмбриональных фибробластах человека в результате воздействия нитрозоэтилмочевиной.

Важный органоид ядра клетки - ядрышко - является продуктом жизнедеятельности хромосом. Оно продуцирует рибонуклеиновую кислоту (РНК), являющуюся обязательным промежуточным звеном в синтезе белка, вырабатываемого каждой клеткой.

Ядро клетки отделено от окружающей цитоплазмы (см.) оболочкой, толщина которой 60-70 Å.

Через поры в оболочке вещества, синтезируемые в ядре, поступают в цитоплазму. Пространство между оболочкой ядра и всеми его органоидами заполнено кариоплазмой, состоящей из основных и кислых белков, ферментов, нуклеотидов, неорганических солей и других низкомолекулярных соединений, необходимых для синтеза дочерних хромосом при делении ядра клетки.

Ядро есть только у эукариотических клеток. При этом некоторые из них его утрачивают в процессе дифференцировки (зрелые членики ситовидных трубок, эритроциты). У инфузорий есть два ядра: макронуклеус и микронуклеус. Бывают многоядерные клетки, возникшие путем объединения нескольких клеток. Однако в большинстве случаев в каждой клетке имеется только одно ядро.

Ядро клетки является самым крупным ее органоидом (если не считать центральные вакуоли клеток растений). Оно самое первое из клеточных структур, которое было описано учеными. Клеточные ядра обычно имеют шаровидную или яйцевидную форму.

Ядро регулирует всю активность клетки. В нем находятся хроматиды - нитевидные комплексы молекул ДНК с белками-гистонами (особенностью которых является содержание в них большого количества аминокислот лизина и аргинина). ДНК ядра хранит информацию о почти всех наследственных признаках и свойствах клетки и организма. В период клеточного деления хроматиды спирализуются, в таком состоянии они видны в световой микроскоп и называются хромосомами .

Хроматиды в неделящейся клетке (в период интерфазы) не полностью деспирализованы. Плотно спирализованные части хромосом называются гетерохроматином . Он располагается ближе к оболочке ядра. К центру ядра располагается эухроматин - более деспирализованная часть хромосом. На нем происходит синтез РНК, т. е. идет считывание генетической информации, экспрессия генов.

Репликация ДНК предшествует делению ядра, которое, в свою очередь, предшествует делению клетки. Таким образом, дочерние ядра получают уже готовую ДНК, а дочерние клетки - готовые ядра.

Внутреннее содержимое ядра отделяется от цитоплазмы ядерной оболочкой , состоящей из двух мембран (внешней и внутренней). Таким образом, ядро клетки относится к двумембранным органоидам. Пространство между мембранами называется перинуклеарным .

Внешняя мембрана в определенных местах переходит в эндоплазматическу сеть (ЭПС). Если на ЭПС располагаются рибосомы, то она называется шероховатой. Рибосомы могут размешаться и на наружней ядерной мембране.

Во множестве мест внешняя и внутренняя мембраны сливаются друг с другом, образуя ядерные поры . Их число непостоянно (в среднем исчисляются тысячами) и зависит от активности биосинтеза в клетке. Через поры ядро и цитоплазма обмениваются различными молекулами и структурами. Поры - это не просто дырки, они сложно устроены для избирательного транспорта. Их структуру определяют различные белки-нуклеопорины.


Из ядра выходят молекулы иРНК, тРНК, субчастицы рибосом.

В ядро через поры заходят различные белки, нуклеотиды, ионы и др.

Субчастицы рибосом собираются из рРНК и рибосомных белков в ядрышке (их может быть несколько) . Центральную часть ядрышка образуют специальные участки хромосом (ядрышковые организаторы ), которые располагаются рядом друг с другом. В ядрышковых организаторах содержится большое количество копий кодирующих рРНК генов. Перед клеточным делением ядрышко исчезает и вновь образуется уже во время телофазы.

Жидкое (гелеобразное) содержимое клеточного ядра называется ядерным соком (кариоплазмой, нуклеоплазмой) . Его вязкость почти такая же как у гиалоплазмы (жидкое содержимое цитоплазмы), однако кислотность выше (ведь ДНК и РНК, которых в ядре большое количество, - это кислоты). В ядерном соке плавают белки, различные РНК, рибосомы.