» »

Формула релятивистской массы. Основные формулы релятивистской механики. Квантовые числа электронов

23.12.2023

Для фотона никакого гравитационного отклонения траектории не происходит . Фотон движется прямолинейно и равномерно по своей мировой линии в 4-х мерном пространстве-времени. Для нас же, наблюдателей движения фотона (света) в 3-х мерном пространстве в заданном времени, траектория фотона выглядит искривленной, из-за кривизны пространства вблизи массивных обьектов.

Такого понятия как "релятивистская масса" не существует в природе . Это впервые заметил (1989 г) Академик Лев Борисович Окунь. Он ввёл даже специальный термин - "педагогический вирус", кочующий из одного учебника в другой. Одну из последних публикаций по этому вопросу можете прочитать . Крутым парням рекомендую ознакомиться по этому поводу с научной статьей в .

Л. Окунь указывает, что из формулы Эйнштейна для энергии покоя, Е₀ = mc², и формулы полной энергии Е = γmc², не следует определение релятивистской массы (m′=γm), а следует лишь формула роста полной энергии со скоростью по релятивистскому закону Е = γЕ₀. Математически, определение "релятивистской массы" безупречно. Но масса не может зависеть от скорости. Только представьте себе - 3 компоненты массы?! Нонсенс.

И фотон и мы живем в одном и том же 4-х мерном пространстве-времени. Но измерять, видеть, чувствовать, наблюдать мы мощем только в 3-х мерном пространстве для каждого заданного момента времени в направлении в будущее. 4-х мерное пространство-время нам не доступно физически никак. Пути туда нет. О его существовании мы догадываемся из наблюдаемых релятивистских и гравитационных эффектов. Можно так же задать вопрос: "А почему это так?" или "Так ли это на самом деле?". Точного ответа на них нет и по-видимому не предвидется.

Ответить

Что фотоны как то поглощаются черными дырами вроде установлено.Но они безмассовые и гравитационного взаимодействия вроде не должно быть.Мне пока не "доходит".Ньютон сказап:нет вверх-вниз,а есть гравитация.Эйнштейн сказал:нет гравитации,а есть искривление пространства-времени.Как Ньютон додумался -вроде "врубиться "можно. Какие мозги надо,чтобы "постичь" Эйнштейна-не "врублюсь".Один из "упоров"-4 мерное пространство.Многомерные пространства в математике не диковинка (многомерные пространства и линейная алгебра во многих хороших учебниках).Но и там "заковыки":Римановы пространства,Гильбертовы,есть еще Банаховы и др.,которые к тому же могут быть сопряженными и еще самосопряженными.И сверху инструмент к ним в виде тензорного исчисления.Полный "абажур".Но охоту отбивать вовсе не намерен.Попробую некоторый луч света ввести в темное царство.Ведь на самом деле мы и 3-х мерное пространство не воспринимаем (воспринимаем его двумерную проекцию).Действительно.Кто может воспринять даже простой 3-х мерный куб сразу со всех сторон?Проще: если грани покрашены в разные цвета,то вы никак не скажете,какого цвета задняя или нижняя грани пока не повернете куб.А мы пытаемся"постичь" 4-х мерный куб сразу со всех сторон?!По крайней мере надо самому быть 4-х мерным или даже 5-ти мерным.Остается постигать абстрактными методами по крайней мере математикой.Не сильно обрадовал,но хоть возможно убедил,что биться лбом о 4-х мерную стенку не стоит.Все равно лоб не 4-х мерный,а всего лишь 3-х мерный.

> Релятивистские энергия и масса

Изучите массу и энергию релятивистской частицы в специальной теории относительности. Рассмотрите роль скорости света, формулы релятивистской массы и энергии.

В специальной теории относительности, если движение объекта приближается к скорости света, то энергия и импульс возрастают без ограничений.

Задача обучения

  • Охарактеризовать возможность движения объекта со световой скоростью.

Основные пункты

Термины

  • Специальная теория относительности: световая скорость остается неизменной во всех системах отсчета.
  • Масса покоя – масса тела, когда оно не перемещается по отношению к наблюдателю.
  • Коэффициент Лоренца – используется для определения степени временного замедления, сокращения длины и релятивистской массы.

Релятивистские энергия и масса

В специальной теории относительности Эйнштейна, если объект наделен массой, то не способен достигать световой скорости. По мере приближения к отметке, его энергия и импульс будут возрастать без ограничений. Релятивистские поправки для энергии и массы нужны, потому что световая скорость в вакууме остается стабильной во всех системах отсчета.

Сохранение массы и энергии – общепринятые физические законы. Чтобы они действовали, должна функционировать специальная теория относительности. Если скорость объекта ниже световой, то выражения для значений релятивистских энергии и массы будут примерно сходиться с ньютоновскими вариантами.

Здесь показана связь между релятивистской и ньютоновской кинетической энергией и скоростью объекта. Релятивистская будет возрастать до бесконечности, если объект приближается к световой скорости. А вот показатель Ньютона продолжит расти по мере увеличения скорости объекта

Релятивистская масса

В 1934 году массу релятивистской частицы определил Ричард К. Толман. Для частички с нулевой массой покоя выступает коэффициент Лоренца (v – относительная скорость между инерциальными системами отсчета, c – световая скорость).

Ричард К. Толман и Альберт Эйнштейн (1932 год)

Если относительная скорость приравнивается к нулю, то достигает 1, а релятивистская масса сводится к массе покоя. По мере возрастания скорости к световой, знаменатель правой стороны стремится к нулю, то есть, к бесконечности.

В уравнении для импульса масса будет релятивистской. То есть, это постоянная пропорциональности между скоростью и импульсом.

Стоит отметить, что несмотря на действенность второго закона Ньютона, производная форма будет недействительной, потому что не выступает постоянной.

Релятивистская энергия

Релятивистская энергия связана с массой покоя через формулу:

Это квадрат эвклидовой формы для различных векторов импульса в системе.

В современном мире предсказания релятивистской энергии и массы регулярно подтверждаются в экспериментах с ускорителями частиц. Можно не только точно определить рост релятивистских импульса и энергии, но их также используют для понимания поведения циклотронов и синхротрона.

Инвариантная масса - исключительно важная характеристика коллектива частиц, описывающая их разлет относительно друг друга. Без измерения и обсуждения инвариантной массы не обходится практически никакой анализ современных коллайдерных данных. Однако прежде, чем рассказывать об инвариантной массе, начнем с одного недоразумения, касающегося понятия массы.

Масса не растет со скоростью!

Есть широко распространенное убеждение, что масса растет со скоростью; ее часто называют «релятивистской массой». Это убеждение основано на неправильной интерпретации связи между энергией и массой: мол, раз с увеличением скорости растет энергия, значит растет и масса. Это утверждение встречается не только во многих популярных книжках, но и в школьных и даже в вузовских учебниках физики.

Это утверждение неверно (для пущей педантичности см. приписку ниже мелким шрифтом). Масса - в том виде, в котором это слово понимает современная физика, и в особенности физика элементарных частиц, - от скорости не зависит . От скорости зависит энергия частицы и ее импульс, при околосветовых скоростях меняются законы динамики и кинематики. Но масса частицы - величина, которая связана с полной энергией E и импульсом p формулой

m 2 = E 2 /c 4 – p 2 /c 2 ,

остается неизменной. В популярных материалах эту величину называют «массой покоя» и противопоставляют ее «релятивистской массе», но подчеркнем еще раз: это разделение проводится только в популярных материалах и в некоторых курсах физики. В современной физике нет никакой «релятивистской массы», в ней есть только «масса», определенная этим уравнением. Термин «релятивистская масса» - это неудачный прием популяризации физики, давным-давно уже от настоящей физики оторвавшийся.

Для читателя, который уже наслышан об этой проблеме, а может быть, даже поучаствовал в спорах по поводу нее, такая точка зрения может показаться несколько «экстремистской». Ведь формально мы можем ввести понятие релятивистской массы и переписать все уравнения с помощью нее, а не настоящей массы, и никакой математической ошибки мы при этом не совершим. Так почему же «релятивистскую массу» лишают права на существование?

Дело в том, что этот термин бесплоден с научной точки зрения и вреден с педагогической. Во-первых, опыт показывает, что он вовсе не упрощает понимание теории относительности (если под пониманием подразумевать что-то большее, чем просто знание нескольких слов). Во-вторых, он сбивает с толку «житейскую интуицию» непосвященного читателя и часто приводит его к ошибочным умозаключениям (например, о том, что тело, движущееся со скоростью, достаточно близкой к скорости света, неизбежно превратится в черную дыру из-за «возросшей массы»). Этот термин подспудно настраивает интуицию читателя на принятие выводов о том, что с частицей могут происходить изменения, зависящие от системы отсчета. И наконец, - повторим снова! - «релятивистская масса» не соответствует ни одной реальной характеристике частицы, которые знает современная физика; это исключительно прием популяризации физики.

Поэтому с образовательной точки зрения намного полезнее вообще не вводить этот термин.

Подробнее про происхождение и вред этого заблуждения см. в многочисленных публикациях выдающегося физика Льва Борисовича Окуня, например в заметке «Релятивистская» кружка .

Инвариантная масса

Пусть у нас есть две частицы с энергиями E 1 и E 2 и импульсами p 1 и p 2 (жирный шрифт указывает на то, что импульс - вектор). Это могут быть две сталкивающиеся или две разлетающиеся частицы, неважно. Их массы, разумеется, вычисляются по энергиям и импульсам в соответствии с приведенной выше формулой.

Мы хотим теперь что-то узнать о свойстве этой пары частиц как единой системы . Мы можем написать полную энергию E 12 и полный импульс p 12 этой системы, E 12 = E 1 + E 2 , p 12 = p 1 + p 2 , при этом импульсы суммируются как вектора. А значит, мы можем вычислить и некую похожую на массу величину m 12 по формуле

m 12 2 = E 12 2 /c 4 – p 12 2 /c 2 .

Эта величина m 12 и называется инвариантной массой пары частиц. Ее важнейшее свойство состоит как раз в том, что она инвариантна, то есть не зависит от системы отсчета, в которой мы проводим вычисление (хотя энергии и импульсы зависят).

Обратим внимание, что инвариантная масса вовсе не равна сумме масс двух частиц! Более того, несложно доказать, что m 12 ≥ m 1 + m 2 , причем равенство возможно только тогда, когда две частицы движутся с одинаковыми скоростями (то есть первая частица покоится с точки зрения второй). Итак, для пары частиц у нас имеются три независимых характеристики, не зависящие от системы отсчета: m 1 , m 2 и m 12 .

Если мы изучаем не две частицы, а больше, то инвариантные массы по этим правилам можно сосчитать не только для всей системы целиком, но и для любой пары, тройки и вообще любой комбинации этих частиц. Заметьте, что сосчитав эти массы, мы еще ничего не утверждаем про сами частицы, про их происхождение, про то, в каких «отношениях» они состоят друг с другом. Это просто дополнительные кинематические величины, которые не зависят от системы отсчета.

Инвариантная масса как «метка» происхождения частиц

Инвариантная масса характеризует, насколько бурно частицы разлетаются друг от друга , насколько интенсивен этот разлет (или их столкновение, если речь идет о сталкивающихся частицах). Говоря совсем упрощенно, если разлет частиц представить себе как «микровзрыв» коллектива частиц, то инвариантная масса характеризует «энергетический баланс» этого микровзрыва. Для примера на рис. 1 показаны две ситуации, в которых энергии двух частиц E 1 и E 2 и модули их импульсов |p 1 | и |p 2 | одни и те же, но инвариантные массы разные.

Главная польза от инвариантной массы в том, что она помогает узнать происхождение этих частиц : получились ли они от распада какой-то одной промежуточной нестабильной частицы или же родились в разных процессах. В первом случае их инвариантная масса примерно совпадает с массой этой нестабильной частицы, а во втором случае она может быть произвольной. Этот прием сплошь и рядом используется при анализе результатов столкновений элементарных частиц; именно с помощью него мы узнаем о быстротечном существовании нестабильных частиц и умеем отделять разные типы событий друг от друга.

Возьмем ставший уже знаменитым пример: поиск хиггсовского бозона на Большом адронном коллайдере через его распад на два фотона. Если хиггсовский бозон рождается в столкновении, он может распасться на два фотона (рис. 2, слева). Но такая же пара фотонов может получиться и сама по себе, безо всяких промежуточных частиц, просто за счет излучения фотонов кварками (рис. 2, справа). Детектор в обоих случаях увидит пару фотонов и не сможет сказать, за счет чего они появились. Просто детектируя фотоны, мы не сможем доказать, что у нас действительно иногда происходит рождение и распад бозона Хиггса.

На помощь приходит изучение инвариантной массы двух фотонов m γγ . В каждом конкретном событии с двумя фотонами надо вычислить эту инвариантную массу, а затем подсчитать, сколько событий с какой инвариантной массой у нас получилось, и построить график: количество событий в зависимости от m γγ . Если хиггсовского бозона в данных нет (или пока не видно), эта зависимость будет плавной - ведь энергии и импульсы двух фотонов не связаны, поэтому инвариантная масса может получиться какой угодно. Если же хиггсовский бозон есть, на графике должен проступить бугорок. Этот бугорок - это те дополнительные события, которые получились именно за счет рождения бозона Хиггса и его распада на два фотона. Положение бугорка укажет на массу бозона, а его высота - на интенсивность этого процесса.

На рис. 3 показаны данные детектора ATLAS по результатам 2011-го и 2012 года в области инвариантной массы двух фотонов от 100 до 160 ГэВ. Виден более-менее плавный фон, уменьшающийся с ростом m γγ и вызванный как раз независимым рождением двух фотонов. И на этом фоне хорошо заметен нужный бугорок в районе 125 ГэВ. Он не слишком сильный, но благодаря маленьким погрешностям у него большая статистическая значимость, а значит, существование новой частицы, распадающейся на два фотона, можно считать экспериментально доказанным.

Дополнительная литература:

  • Г. И. Копылов. «Всего лишь кинематика», вып. 11

Рисунок 1. Релятивистская механика материальной точки. Автор24 - интернет-биржа студенческих работ

На таких сверхвысоких скоростях с физическими вещами начинают происходить совершенно неожиданные и волшебные процессы, такие как замедления времени и релятивистское сокращение длины.

В пределах исследования релятивистской механики меняются формулировки некоторых устоявшихся в физике физических величин.

Данная формула, которую знает практически каждый человек, показывает, что масса является абсолютной мерой энергии тела, а также демонстрирует принципиальную вероятность перехода энергетического потенциала вещества в энергию излучения.

Основной закон релятивистской механики в виде материальной точки записывается так же, как и второй закон Ньютона : $F=\frac{dp}{dT}$.

Принцип относительности в релятивистской механике

Рисунок 2. Постулаты теории относительности Эйнштейна. Автор24 - интернет-биржа студенческих работ

Принцип относительности Эйнштейна подразумевает инвариантность всех существующих законов природы по отношению к постепенному переходу от одной инерциальной концепции отсчета к другой. Это означает, что все описывающие природные законы формулы должны быть полностью инвариантны относительно преобразований Лоренца. К моменту возникновения СТО теория, удовлетворяющая данному условию, уже была представлена классическая электродинамика Максвелла. Однако все уравнения ньютоновской механики оказались абсолютно неинвариантными относительно других научных постулатов, и поэтому СТО требовала пересмотра и уточнения механических закономерностей.

В основу такого важного пересмотра Эйнштейн озвучил требования выполнимости закона сохранения импульса и внутренней энергии, которые находятся в замкнутых системах. Для того, чтобы принципы нового учения выполнялся во всех инерциальных концепциях отсчета, оказалось важным и первостепенным изменить определение самого импульса физического тела.

Если принять и использовать такое определение, то закон сохранения конечного импульса взаимодействующих активных частиц (например, при внезапных соударениях) начнет выполняться во всех инерциальных системах, непосредственно связанных преобразованиями Лоренца. При $β → 0$ релятивистский внутренний импульс автоматически переходит в классический. Масса $m$, входящая в основное выражение для импульса, является фундаментальная характеристика мельчайшей частицы, не зависящая от дальнейшего выбора концепции отсчета, а, следовательно, и от коэффициента ее движения.

Релятивистский импульс

Рисунок 3. Релятивистский импульс. Автор24 - интернет-биржа студенческих работ

Релятивистский импульс не пропорционален начальной скорости частицы, а его изменения не зависят от возможного ускорения взаимодействующих в инерциальной системе отчета элементов. Поэтому постоянная по направлению и модулю сила не вызывает прямолинейного равноускоренного движения. Например, в случае одномерного и плавного движения вдоль центральной оси x ускорение всех частицы под воздействием постоянной силы оказывается равным:

$a= \frac{F}{m}(1-\frac{v^2}{c^2})\frac{3}{2}$

Если скорость определенной классической частицы беспредельно увеличивается под действием стабильной силы, то скорость релятивистского вещества не может в итог превысить скорость света в абсолютной пустоте. В релятивистской механике, так же, как и в законах Ньютона, выполняется и реализуется закон сохранения энергии. Кинетическая энергия материального тела $Ek$ определяется через внешнюю работу силы, необходимую для сообщения в будущем заданной скорости. Чтобы разогнать элементарную частицу массы m из состояния покоя до скорости под влиянием постоянного параметра $F$, эта сила обязана совершить работу.

Чрезвычайно важный и полезный вывод релятивистской механики состоит в том, что находящаяся в постоянном покое масса $m$ содержит невероятный запас энергии. Это утверждение имеет различные практические применения, включая сферу ядерной энергии. Если масса любой частицы или системы элементов уменьшилась в несколько раз, то при этом должна выделиться энергия, равная $\Delta E = \Delta m c^2. $

Многочисленные прямые исследования предоставляют убедительные факты существования энергии покоя. Первое экспериментальное доказательства правильности соотношения Эйнштейна, которое связывает объем и массу, было получено при сравнении внутренней энергии, высвобождающейся при мгновенном радиоактивном распаде, с разностью коэффициентов конечных продуктов и исходного ядра.

Масса и энергия в релятивистской механике

Рисунок 4. Импульс и энергия в релятивистской механике. Автор24 - интернет-биржа студенческих работ

В классической механике масса тела не зависит от скорости движения. А в релятивистской она растёт с увеличением скорости. Это видно из формулы: $m=\frac{m_0}{√1-\frac{v^2}{c^2}}$.

  • $m_0$– масса материального тела в спокойном состоянии;
  • $m$ – масса физического тела в той инерциальной концепции отсчёта, относительно которой оно движется со скоростью $v$;
  • $с$ – скорость света в вакууме.

Отличие масс становится видным только при больших скоростях, приближающихся к скорости света.

Кинетическая энергия при конкретных скоростях, приближающихся к световой скорости, исчисляется как некая разность между кинетической энергией движущегося тела и кинетической энергией тела, находящегося в состоянии покоя:

$T=\frac{mc^2}{√1-\frac{v^2}{c^2}}$.

При скоростях, значительно меньших скорости света, это выражение переходит в формулу кинетической энергии классической механики: $T=\frac{1}{2mv^2}$.

Скорость света является всегда граничным значением. Быстрее света в принципе не может двигаться ни одно физическое тело.

Многие задачи и проблемы смогло бы решить человечество, если бы ученым удалось разработать универсальные аппараты, способные передвигаться со скоростью, приближающейся к скорости света. Пока же люди могут о таком чуде только мечтать. Но когда-нибудь полёт в космос или на другие планеты с релятивистской скоростью станет не вымыслом, а реальностью.

После того, как Эйнштейн предложил принцип эквивалентности массы и энергии, стало очевидно, что понятие массы может использоваться двояко. С одной стороны, это та масса, которая фигурирует в классической физике, с другой - можно ввести так называемую релятивистскую массу как меру полной (включая кинетическую) энергии тела . Эти две массы связаны между собой соотношением:

где m rel - релятивистская масса, m - «классическая» масса (равная массе покоящегося тела), v - скорость тела. Введённая таким образом релятивистская масса является коэффициентом пропорциональности между импульсом и скоростью тела :

Аналогичное соотношение выполняется для классических импульса и массы, что также приводится как аргумент в пользу введения понятия релятивистской массы. Введённая таким образом релятивистская масса в дальнейшем привела к тезису, что масса тела зависит от скорости его движения .

В процессе создания теории относительности обсуждались понятия продольной и поперечной массы частицы. Пусть сила, действующая на частицу, равна скорости изменения релятивистского импульса. Тогда связь силы и ускорения существенно изменяется по сравнению с классической механикой:

Если скорость перпендикулярна силе, то , а если параллельна, то , где - релятивистский фактор. Поэтому m γ = m rel называют продольной массой, а m γ 3 - поперечной.

Утверждение о том, что масса зависит от скорости, вошло во многие учебные курсы и в силу своей парадоксальности приобрело широкую известность среди неспециалистов. Однако в современной физике избегают использовать термин «релятивистская масса», используя вместо него понятие энергии, а под термином «масса» понимая массу покоя. В частности, выделяются следующие недостатки введения термина «релятивистская масса» :

§ неинвариантность релятивистской массы относительно преобразований Лоренца;

§ синонимичность понятий энергия и релятивистская масса, и, как следствие, избыточность введения нового термина;

§ наличие различных по величине продольной и поперечной релятивистских масс и невозможность единообразной записи аналогавторого закона Ньютона в виде

§ методологические сложности преподавания специальной теории относительности, наличие специальных правил, когда и как следует пользоваться понятием «релятивистская масса» во избежание ошибок;

§ путаница в терминах «масса», «масса покоя» и «релятивистская масса»: часть источников просто массой называют одно, часть - другое.



Несмотря на указанные недостатки, понятие релятивистской массы используется и в учебной , и в научной литературе. Следует, правда, отметить, что в научных статьях понятие релятивистской массы используется по большей части только при качественных рассуждениях как синоним увеличения инертности частицы, движущейся с околосветовой скоростью.


58. Строение атома. Опыты Резерфорда.

1. В центре атома находится положительно заряженное ядро, занимающее ничтожную часть пространства внутри атома.
2. Весь положительный заряд и почти вся масса атома сосредоточены в его ядре.
3. Ядра атомов состоят из протонов и нейтронов (нуклонов). Число протонов в ядре равно порядковому номеру элемента, а сумма чисел протонов и нейтронов соответствует его массовому числу.
4. Вокруг ядра по замкнутым орбитам вращаются электроны. Их число равно положительному заряду ядра.

Ядро - это центральная позитивно заряженная часть атома, в которой сосредоточена его масса.
Электрон - частица с негативным зарядом, который условно принят за -1.
Нейтрон - нейтральная частица, не имеющая электрического заряда. Масса нейтрона равна 1 а. е. м.
Протон - положительно заряженная частица, с такой же массой, как и нейтрон. Заряд протона равен заряду электрона и противоположен по знаку.
Число протонов в ядре атома равно числу электронов. Это число определяет заряд ядра атома элемента и его порядковый номер элемента в таблице Менделеева.
При известных условиях нейтрон может превращаться в протон и наоборот.
Атомные массы элементов в периодической таблице являются средним значением из массовых чисел природных смесей из изотопов. Поэтому они не могут, как считал Менделеев, служить главной характеристикой атома и элемента. Такой характеристикой является заряд ядра атома. Он определяет число электронов в нейтральном атоме, которые распределяются вокруг ядра по определенным орбитам и определяют химические свойства атомов. В результате этого было дано новое определение химического элемента и уточнена формулировка периодического закона:
Химический элемент - это совокупность атомов с одинаковым зарядом ядра.
Свойства элементов, а также свойства и формы их соединений находятся в периодической зависимости от заряда ядра атома элемента.



От радиоактивного источника, заключенного в свинцовый контейнер, α-частицы направлялись на тонкую металлическую фольгу. Рассеянные частицы попадали на экран, покрытый слоем кристаллов сульфида цинка, способных светиться под ударами быстрых заряженных частиц. Сцинтилляции (вспышки) на экране наблюдались глазом с помощью микроскопа. Наблюдения рассеянных α-частиц в опыте Резерфорда можно было проводить под различными углами φ к первоначальному направлению пучка. Было обнаружено, что большинство α-частиц проходит через тонкий слой металла, практически не испытывая отклонения. Однако небольшая часть частиц отклоняется на значительные углы, превышающие 30°. Очень редкие α-частицы (приблизительно одна на десять тысяч) испытывали отклонение на углы, близкие к 180°.

Этот результат был совершенно неожиданным даже для Резерфорда. Его представления находилbcm в резком противоречии с моделью атома Томсона, согласно которой положительный заряд распределен по всему объему атома. При таком распределении положительный заряд не может создать сильное электрическое поле, способное отбросить α-частицы назад. Электрическое поле однородного заряженного шара максимально на его поверхности и убывает до нуля по мере приближения к центру шара. Если бы радиус шара, в котором сосредоточен весь положительный заряд атома, уменьшился в n раз, то максимальная сила отталкивания, действующая на α-частицу, по закону Кулона возросла бы в n 2 раз. Следовательно, при достаточно большом значении n α-частицы могли бы испытать рассеяние на большие углы вплоть до 180°. Эти соображения привели Резерфорда к выводу, что атом почти пустой, и весь его положительный заряд сосредоточен в малом объеме. Эту часть атома Резерфорд назвал атомным ядром . Так возникла ядерная модель атома. Таким образом, опыты Резерфорда и его сотрудников привели к выводу, что в центре атома находится плотное положительно заряженное ядро, диаметр которого не превышает 10 –14 –10 –15 м. Это ядро занимает только 10 –12 часть полного объема атома, но содержит весь положительный заряд и не менее 99,95 % его массы. Веществу, составляющему ядро атома, следовало приписать колоссальную плотность порядка ρ ≈ 10 15 г/см 3 . Заряд ядра должен быть равен суммарному заряду всех электронов, входящих в состав атома.

Квантовые числа электронов

Состояние каждого электрона в атоме обычно описывают с помощью четырех квантовых чисел: главного (n), орбитального (l), магнитного (m) и спинового (s). Первые три характеризуют движение электрона в пространстве, а четвертое - вокруг собственной оси.

Главное квантовое число (n). Определяет энергетический уровень электрона, удаленность уровня от ядра, размер электронного облака. Принимает целые значения (n = 1, 2, 3 ...) и соответствует номеру периода. Из периодической системы для любого элемента по номеру периода можно определить число энергетических уровней атома и какой энергетический уровень является внешним.

Пример.
Элемент кадмий Cd расположен в пятом периоде, значит n = 5. В его атоме электроны раcпределены по пяти энергетическим уровням (n = 1, n = 2, n = 3, n = 4, n = 5); внешним будет пятый уровень (n = 5).

Орбитальное квантовое число (l) характеризует геометрическую форму орбитали. Принимает значение целых чисел от 0 до (n - 1). Независимо от номера энергетического уровня, каждому значению орбитального квантового числа соответствует орбиталь особой формы. Набор орбиталей с одинаковыми значениями n называется энергетическим уровнем, c одинаковыми n и l - под Магнитное квантовое число (m) характеризует положение электронной орбитали в пространстве и принимает целочисленные значения от -I до +I, включая 0. Это означает, что для каждой формы орбитали существует (2l + 1) энергетически равноценных ориентации в пространстве.
Для s- орбитали (l = 0) такое положение одно и соответствует m = 0. Сфера не может иметь разные ориентации в пространстве.
Для p- орбитали (l = 1) - три равноценные ориентации в пространстве (2l + 1 = 3): m = -1, 0, +1.
Для d- орбитали (l = 2) - пять равноценных ориентаций в пространстве (2l + 1 = 5): m = -2, -1, 0, +1, +2.
Таким образом, на s- подуровне - одна, на p- подуровне - три, на d- подуровне - пять, на f- подуровне - 7 орбиталей.

Спиновое квантовое число (s ) характеризует магнитный момент, возникающий при вращении электрона вокруг своей оси. Принимает только два значения +1/2 и –1/2 соответствующие противоположным направлениям вращения.

Изучая рассеяние альфа-частиц при прохождении через золотую фольгу, Резерфорд пришел к выводу, что весь положительный заряд атомов сосредоточен в их центре в очень массивном и компактном ядре. А отрицательно заряженные частицы (электроны) обращаются вокруг этого ядра. Эта модель коренным образом отличалась от широко распространенной в то время модели атома Томсона, в которой положительный заряд равномерно заполнял весь объем атома, а электроны были вкраплены в него. Несколько позже модель Резерфорда получила название планетарной модели атома (она действительно похожа на Солнечную систему: тяжелое ядро - Солнце, а обращающиеся вокруг него электроны - планеты).

Рассеивание альфа частиц в веществе.

Альфа-частицы испускались источником, помещенным внутри свинцовой полости. Все альфа-частицы, кроме движущихся вдоль канала, поглощались свинцом. Узкий пучок альфа-частиц попадал на фольгу из золота перпендикулярно к ее поверхности; альфа-частицы, прошедшие сквозь фольгу и рассеянные ею, вызывали вспышки (сцинтилляции) на экране, покрытым веществом, способным светиться при попадании частиц. В пространстве между фольгой и экраном обеспечивается достаточный вакуум, чтобы не происходило рассеяние альфа-частиц в воздухе. Конструкция прибора позволила наблюдать альфа-частицы, рассеянные под углом до 150 градусов.
59. Вероятностное описание – принципиальная особенность микромира.


60. Корпускулярно-волновой дуализм.

Корпускуля́рно-волново́й дуали́зм - принцип, согласно которому любой объект может проявлять как волновые, так и корпускулярные свойства. Был введён при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепцияквантованных полей в квантовой теории поля.

Как классический пример, свет можно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойства электромагнитных волн. Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны. Например, даже одиночные фотоны, проходящие через двойную щель, создают на экране интерференционную картину, определяемую уравнениями Максвелла .

Тем не менее, эксперимент показывает, что фотон не есть короткий импульс электромагнитного излучения, например, он не может быть разделён на несколько пучков оптическими делителями лучей, что наглядно показал эксперимент, проведённый французскими физиками Гранжье, Роже и Аспэ в 1986 году . Корпускулярные свойства света проявляются при фотоэффекте и в эффекте Комптона. Фотон ведет себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами), или вообще могут считаться точечными (например, электрон).

В настоящий момент концепция корпускулярно-волнового дуализма представляет лишь исторический интерес, так как служила только интерпретацией, способом описать поведение квантовых объектов, подбирая ему аналогии из классической физики. На деле квантовые объекты не являются ни классическими волнами, ни классическими частицами, приобретая свойства первых или вторых лишь в некотором приближении. Методологически более корректной является формулировка квантовой теории через интегралы по траекториям (пропагаторная), свободная от использования классических понятий.