» »

Какая величина называется средней. Средние величины в статистике

14.10.2019

Средние статистические величины имеют несколько видов, но все они относятся к классу степенных средних, т. е. средних, построенных из различных степеней вариантов: средняя арифметическая, средняя гармоническая, средняя квадратическая, средняя геометрическая и т. д.

Общий вид формулы степенной средней таков:

где х - средняя определенной степени (читается «икс с чертой»); х - варианты (меняющиеся значения признака); п - число вариант (число единиц в совокупности); т - показатель степени средней величины; Z - знак суммирования.

При расчете различных степенных средних все основные показатели, на основе которых осуществляется этот расчет (х, п ), остаются неизменными. Меняется только величина т и соответственно х.

Если т = 2, то получается средняя квадратическая. Ее формула:

Если т = 1, то получается средняя арифметическая. Ее формула:

Если т = - 1, то получается средняя гармоническая. Ее формула:

Если т = 0, то получается средняя геометрическая. Ее формула:

Различные виды средних при одних и тех же исходных показателях (значении вариант х и их числе п ) имеют в связи с разными значениями степени далеко не одинаковые численные значения. Рассмотрим их на конкретных примерах.

Предположим, что в поселке N в 1995 г. было зарегистрировано три автотранспортных преступления, а в 1996 г. - шесть. В этом случае х х = 3, х 2 = 6, а п (число вариант, лет) в обоих случаях равно 2.

При значении степени т = 2 получаем среднюю квадратическую величину:


При значении степени т = 1 получаем среднюю арифметическую величину:

При значении степени т = 0 получаем среднюю геометрическую величину:

При значении степени т = - 1 получаем среднюю гармоническую величину:

Произведенные расчеты показали, что разные средние образуют между собой следующую цепь неравенства:

Закономерность проста: чем меньше степень средней (2; 1; 0; -1), тем меньше значение соответствующей средней. Таким образом, каждая средняя приведенного ряда мажорантна (от фр. majeur - больший) в отношении средних, стоящих справа от нее. Это называется правилом мажорантности средних.

В приведенных упрощенных примерах значения вариант (х) не повторялись: значение 3 встречалось один раз и значение 6 - тоже. Статистические реалии более сложны. Значения вариантов могут повторяться по нескольку раз. Вспомним обоснование выборочного метода на основе экспериментального извлечения карточек, пронумерованных от 1 до 10. Некоторые номера карточек извлекались по два, три, пять, восемь раз. При расчете среднего возраста осужденных, среднего срока наказания, среднего срока расследования или рассмотрения уголовных дел одна и та же варианта (х), например возраст 20 лет или мера наказания пять лет, может повторяться десятки и даже сотни раз, т. е. с той или иной частотой (/). В этом случае в общую и специальные формулы расчета средних вводится символ / - частота. Частоты при этом называют статистическими весами, или весами средней, а сама средняя называется взвешенной степенной средней. Это означает, что каждая варианта (возраст 25 лет) как бы взвешивается по частоте (40 человек), т. е. умножается на нее.

Итак, общая формула взвешенной степенной средней имеет вид:

где х - взвешенная средняя степени т х - варианты (меняющиеся значения признака); т - показатель степени средней; I - знак суммирования; / - частоты вариант.

Формулы других взвешенных средних будут иметь такой вид:

средняя квадратическая -

средняя арифметическая -

средняя геометрическая -

средняя гармоническая -

Выбор обычной средней или взвешенной определяется статистическим материалом, а выбор вида степенной (арифметической, геометрической и т. д.) - целью исследования. Вспомним, когда рассчитывался среднегодовой прирост абсолютных показателей, мы прибегали к средней арифметической, а когда исчисляли среднегодовые темпы прироста (снижения), то вынуждены были обращаться к средней геометрической, поскольку средняя арифметическая эту задачу выполнить не могла, так как приводила к ошибочным выводам.

В юридической статистике самое широкое применение находит средняя арифметическая. Она используется при оценке нагрузки оперативных работников, следователей, прокуроров, судей, адвокатов, других сотрудников юридических учреждений; расчете абсолютного прироста (снижения) преступности, уголовных и гражданских дел и других единиц измерения; обосновании выборочного наблюдения и т. д.

Средняя геометрическая величина используется при вычислении среднегодовых темпов прироста (снижения) юридически значимых явлений.

Средний квадратичный показатель (средний квадрат отклонения, среднеквадратическое отклонение) играет важную роль при измерении связей между изучаемыми явлениями и их причинами, при обосновании корреляционной зависимости.

Некоторые из этих средних, широко применяемых в юридической статистике, а также мода и медиана будут более подробно рассмотрены в последующих параграфах. Средняя гармоническая, средняя кубическая, средняя прогрессивная (изобретение советского времени) в юридической статистике практически не применяются. Средняя гармоническая, например, которая в предыдущих учебниках по судебной статистике подробно излагалась на абстрактных примерах, оспаривается видными экономическими статистиками. Они считают среднюю гармоническую обратной величиной средней арифметической, и поэтому она, по их мнению, не имеет самостоятельного значения, хотя другие статистики видят в ней определенные преимущества . Не вникая в теоретические споры экономических статистиков, скажем, что средняя гармоническая нами подробно не излагается ввиду неприменения в юридическом анализе.

Кроме обычных и взвешенных степенных средних для характеристики среднего значения варианты в вариационном ряду могут быть взяты не расчетные, а описательные средние: мода (наиболее часто встречающаяся варианта) и медиана (срединная варианта в вариационном ряду). Они широко применяются в юридической статистике.

  • См.: Остроумов С. С. Указ. соч. С. 177-180.
  • См.: Пасхавер И. С. Средние величины в статистике. М., 1979. С. 134-150; Ряузов Н. Н. Указ. соч. С. 171-174.

В целях анализа и получения статистических выводов по результатом сводки и группировки исчисляют обобщающие показатели – средние и относительные величины.

Задача средних величин – охарактеризовать все единицы статистической совокупности одним значением признака.

Средними величинами характеризуются качественные показатели предпринимательской деятельности: издержки обращения, прибыль, рентабельность и др.

Средняя величина – это обобщающая характеристика единиц совокупности по какому–либо варьирующему признаку.

Средние величины позволяют сравнивать уровни одного и того же признака в различных совокупностях и находить причины этих расхождений.

В анализе изучаемых явлений роль средних величин огромна. Английский экономист В. Петти (1623-1687 гг.) широко использовал средние величины. В. Петти хотел использовать средние величины в качестве меры стоимости расходов на среднее дневное пропитание одного работника. Устойчивость средней величины – это отражение закономерности изучаемых процессов. Он считал что информацию можно преобразовать, даже если нет достаточного объема исходных данных.

Применял средние и относительные величины английский ученый Г. Кинг (1648-1712) при анализе данных о населении Англии.

Теоретические разработки бельгийского статистика А. Кетле (1796-1874 гг.) основаны на противоречивости природы социальных явлений – высокоустойчивых в массе, но сугубо индивидуальных.

Согласно А. Кетле постоянные причины действуют одинаково на каждое изучаемое явление и делают эти явления похожими друг на друга, создают общие для всех них закономерности.

Следствием учения А. Кетле явилось выделение средних величин в качестве основного приема статистического анализа. Он говорил, что статистические средние величины представляют собой не категорию объективной действительности.

А. Кетле выразил взгляды на среднюю величину в своей теории среднего человека. Средний человек – это человек, обладающий всеми качествами в среднем размере (средняя смертность или рождаемость, средний рост и вес, средняя быстрота бега, средняя наклонность к браку и самоубийству, к добрым делам и т. д.). Для А. Кетле средний человек – это идеал человека. Несостоятельность теории среднего человека А. Кетле была доказана в русской статистической литературе в конце XIX-XX вв.

Известный русский статистик Ю. Э. Янсон (1835-1893 гг.) писал, что А. Кетле предполагает существование в природе типа среднего человека как чего–то данного, от которого жизнь отклонила средних людей данного общества и данного времени, а это приводит его к совершенно механическому взгляду и на законы движения социальной жизни: движение – это постепенное возрастание средних свойств человека, постепенное восстановление типа; следовательно, такое нивелирование всех проявлений жизни социального тела, за которым всякое поступательное движение прекращается.

Сущность данной теории нашла свое дальнейшее развитие в работах ряда теоретиков статистики как теория истинных величин. У А. Кетле были последователи – немецкий экономист и статистик В. Лексис (1837-1914 гг.), перенесший теорию истинных величин на экономические явления общественной жизни. Его теория известна под названием теория устойчивости. Другая разновидность идеалистической теории средних величин основана на философии

Ее основатель – английский статистик А. Боули (1869– 1957гг.) – один из самых видных теоретиков новейшего времени в области теории средних величин. Его концепция средних величин изложена в книге «Элементы статистики».

А. Боули рассматривает средние величины лишь с количественной стороны, тем самым отрывает количество от качества. Определяя значение средних величин (или «их функцию»), А. Боули выдвигает махистский принцип мышления. А. Боули писал, что функция средних величин должна выражать сложную группу

с помощью немногих простых чисел. Статистические данные должны быть упрощены, сгруппированы и приведены к средним Эти взгляды: разделяли Р. Фишер (1890-1968 гг.), Дж. Юл (1871 – 1951 гг.), Фредерик С. Миллс (1892 г) и др.

В 30-е гг. XX в. и последующие годы средняя величина рассматривается как социально значимая характеристика, информативность которой зависит от однородности данных.

Виднейшие представители итальянской школы Р. Бенини (1862-1956 гг.) и К. Джини (1884-1965 гг.), считая статистику отраслью логики, расширили область применения статистической индукции, но познавательные принципы логики и статистики они связывали с природой изучаемых явлений, следуя традициям социологической трактовки статистики.

В работах К. Маркса и В. И. Ленина средним величинам отводится особая роль.

К. Маркс утверждал, что в средней величине погашаются индивидуальные отклонения от общего уровня и средний уровень становится обобщающей характеристикой массового явления Такой характеристикой массового явления средняя величина становится лишь при условии, если взято значительное число единиц и эти единицы качественно однородны. Маркс писал, чтобы находимая средняя величина была средней «…многих различных индивидуальных величин одного и того же вида».

Средняя величина приобретает особую значимость в условиях рыночной экономики. Она помогает определить необходимое и общее, тенденцию закономерности экономического развития непосредственно через единичное и случайное.

Средние величины являются обобщающими показателями, в которых находят выражение действие общих условий, закономерность изучаемого явления.

Статистические средние величины рассчитываются на основе массовых данных статистически правильно организованного массового наблюдения. Если статистическая средняя рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений), то она будет объективной.

Средняя величина абстрактна, так как характеризует значение абстрактной единицы.

От разнообразия признака у отдельных объектов абстрагируется средняя. Абстракция – ступень научного исследования. В средней величине осуществляется диалектическое единство отдельного и общего.

Средние величины должны применяться исходя из диалектического понимания категорий индивидуального и общего, единичного и массового.

Средняя отображает что–то общее, которое складывается в определенном единичном объекте.

Для выявления закономерностей в массовых общественных процессах средняя величина имеет большое значение.

Отклонение индивидуального от общего – проявление процесса развития.

В средней величине отражается характерный, типичный, реальный уровень изучаемых явлений. Задачей средних величин является характеристика этих уровней и их изменений во времени и пространстве.

Средний показатель – это обычное значение, потому что формируется в нормальных, естественных, общих условиях существования конкретного массового явления, рассматриваемого в целом.

Объективное свойство статистического процесса или явления отражает средняя величина.

Индивидуальные значения исследуемого статистического признака у каждой единицы совокупности различны. Средняя величина индивидуальных значений одного вида – продукт необходимости, который является результатом совокупного действия всех единиц совокупности, проявляющийся в массе повторяющихся случайностей.

Одни индивидуальные явления имеют признаки, которые существуют во всех явлениях, но в разных количествах – это рост или возраст человека. Другие признаки индивидуального явления, качественно различные в различных явлениях, т. е. имеются у одних и не наблюдаются у других (мужчина не станет женщиной). Средняя величина вычисляется для признаков качественно однородных и различных только количественно, которые присущи всем явлениям в данной совокупности.

Средняя величина является отражением значений изучаемого признака и измеряется в той же размерности, что и этот признак.

Теория диалектического материализма учит, что все в мире меняется, развивается. А также изменяются признаки, которые характеризуются средними величинами, а соответственно – и сами средние.

В жизни происходит непрерывный процесс создания чего–то нового. Носителем нового качества являются единичные объекты, далее количество этих объектов возрастает, и новое становится массовым, типичным.

Средняя величина характеризует изучаемую совокупность только по одному признаку. Для полного и всестороннего представления изучаемой совокупности по ряду определенных признаков необходимо располагать системой средних величин, которые могут описать явление с разных сторон.

2. Виды средних величин

В статистической обработке материала возникают различные задачи, которые необходимо решать, и поэтому в статистической практике используются различные средние величины. Математическая статистика использует различные средние, такие как: средняя арифметическая; средняя геометрическая; средняя гармоническая; средняя квадратическая.

Для того чтобы применить одну из вышеперечисленных видов средней, необходимо проанализировать изучаемую совокупность, определить материальное содержание изучаемого явления, все это делается на основе выводов, полученных из принципа осмысленности результатов при взвешивании или суммировании.

В изучении средних величин применяются следующие показатели и обозначения.

Признак, по которому находится средняя, называется осредняемым признаком и обозначается х; величина осредняемого признака у любой единицы статистической совокупности называют индивидуальным его значением, или вариантами, и обозначают как x 1 , х 2 , x 3 ,… х п ; частота – это повторяемость индивидуальных значений признака, обозначается буквой f.

Средняя арифметическая

Один из наиболее распространенных видов средней – средняя арифметическая, которая исчисляется тогда, когда объем ос–редняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.

Для вычисления средней арифметической величины сумму всех уровней признака делят на их число.


Если некоторые варианты встречаются несколько раз, то сумму уровней признака можно получить умножением каждого уровня на соответствующее число единиц совокупности с последующим сложением полученных произведений, исчисленная таким образом средняя арифметическая называется средней арифметической взвешенной.

Формула средней арифметической взвешенной выглядит следующим образом:


гдех i – варианты,

f i – частоты или веса.

Взвешенная средняя величина должна употребляться во всех случаях, когда варианты имеют различную численность.

Арифметическая средняя как бы распределяет поровну между отдельными объектами общую величину признака, в действительности варьирующуюся у каждого из них.

Вычисление средних величин производят по данным, сгруппированным в виде интервальных рядов распределения, когда варианты признака, из которых исчисляется средняя, представлены в виде интервалов (от – до).

Свойства средней арифметической:

1) средняя арифметическая суммы варьирующих величин равна сумме средних арифметических величин: Если х i = y i +z i , то


Данное свойство показывает в каких случаях можно суммировать средние величины.

2) алгебраическая сумма отклонений индивидуальных значений варьирующего признака от средней равна нулю, так как сумма отклонений в одну сторону погашается суммой отклонений в другую сторону:


Это правило демонстрирует, что средняя является равнодействующей.

3) если все варианты ряда увеличить или уменьшить на одно и тоже число?, то средняя увеличится или уменьшится на это же число?:


4) если все варианты ряда увеличить или уменьшить в А раз, то средняя также увеличится или уменьшится в А раз:


5) пятое свойство средней показывает нам, что она не зависит от размеров весов, но зависит от соотношения между ними. В качестве весов могут быть взяты не только относительные, но и абсолютные величины.

Если все частоты ряда разделить или умножить на одно и тоже число d, то средняя не изменится.


Средняя гармоническая. Для того чтобы определить среднюю арифметическую, необходимо иметь ряд вариантов и частот, т. е. значения х и f.

Допустим, известны индивидуальные значения признака х и произведения х/, а частоты f неизвестны, тогда, чтобы рассчитать среднюю, обозначим произведение = х/; откуда:



Средняя в этой форме называется средней гармонической взвешенной и обозначается х гарм. взв.

Соответственно, средняя гармоническая тождественна средней арифметической. Она применима, когда неизвестны действительные веса f , а известно произведение = z

Когда произведения одинаковы или равны единицы (m = 1) применяется средняя гармоническая простая, вычисляемая по формуле:


где х – отдельные варианты;

n – число.

Средняя геометрическая

Если имеется n коэффициентов роста, то формула среднего коэффициента:


Это формула средней геометрической.

Средняя геометрическая равна корню степени n из произведения коэффициентов роста, характеризующих отношение величины каждого последующего периода к величине предыдущего.

Если осреднению подлежат величины, выраженные в виде квадратных функций, применяется средняя квадратическая. Например, с помощью средней квадратической можно определить диаметры труб, колес и т. д.

Средняя квадратическая простая определяется путем извлечения квадратного корня из частного от деления суммы квадратов отдельных значений признака на их число.


Средняя квадратическая взвешенная равна:

3. Структурные средние величины. Мода и медиана

Для характеристики структуры статистической совокупности применяются показатели, которые называют структурными средними. К ним относятся мода и медиана.

Мода (М о ) – чаще всего встречающийся вариант. Модой называется значение признака, которое соответствует максимальной точке теоретической кривой распределений.

Мода представляет наиболее часто встречающееся или типичное значение.

Мода применяется в коммерческой практике для изучения покупательского спроса и регистрации цен.

В дискретном ряду мода – это варианта с наибольшей частотой. В интервальном вариационном ряду модой считают центральный вариант интервала, который имеет наибольшую частоту (частность).

В пределах интервала надо найти то значение признака, которое является модой.


где х о – нижняя граница модального интервала;

h – величина модального интервала;

f m – частота модального интервала;

f т -1 – частота интервала, предшествующего модальному;

f m +1 – частота интервала, следующего за модальным.

Мода зависит от величины групп, от точного положения границ групп.

Мода – число, которое в действительности встречается чаще всего (является величиной определенной), в практике имеет самое широкое применение (наиболее часто встречающийся тип покупателя).

Медиана (M e – это величина, которая делит численность упорядоченного вариационного ряда на две равные части: одна часть имеет значения варьирующего признака меньшие, чем средний вариант, а другая – большие.

Медиана – это элемент, который больше или равен и одновременно меньше или равен половине остальных элементов ряда распределения.

Свойство медианы заключается в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины.

Применение медианы позволяет получить более точные результаты, чем при использовании других форм средних.

Порядок нахождения медианы в интервальном вариационном ряду следующий: располагаем индивидуальные значения признака по ранжиру; определяем для данного ранжированного ряда накопленные частоты; по данным о накопленных частотах находим медианный интервал:


где х ме – нижняя граница медианного интервала;

i Me – величина медианного интервала;

f/2 – полусумма частот ряда;

S Me -1 – сумма накопленных частот, предшествующих медианному интервалу;

f Me – частота медианного интервала.

Медиана делит численность ряда пополам, следовательно, она там, где накопленная частота составляет половину или больше половины всей суммы частот, а предыдущая (накопленная) частота меньше половины численности совокупности.

Лекция 5. Средние величины

Понятие средней величины в статистике

Средняя арифметическая и ее свойства

Другие виды степенных средних величин

Мода и медиана

Квартили и децили

Большое распространение в статистике имеют средние величины. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др.

Средняя - это один из распространенных приемов обобщений. Правильное понимание сущности средней определяет ее особую значимость в условиях рыночной экономики, когда средняя через единичное и случайное позволяет выявить общее и крайне важно е, выявить тенденцию закономерностей экономического развития.

Средняя величина - это обобщающие показатели, в которых находят выражение действия общих условий, закономерностей изучаемого явления.

Средняя величина (в статистике) – обобщающий показатель, характеризующий типичный размер или уровень общественных явлений в расчете на единицу совокупности при прочих равных условиях.

С помощью метода средних решаются следующие основные задачи :

1. Характеристика уровня развития явлений.

2. Сравнение двух или нескольких уровней.

3. Изучение взаимосвязей социально - экономических явлений.

4. Анализ размещения социально-экономических явлений в пространстве.

Статистические средние рассчитываются на базе массовых данных правильно статистически организованного массового наблюдения (сплошного и выборочного). При этом статистическая средняя будет объективна и типична, в случае если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). К примеру, в случае если рассчитывать среднюю заработную плату в кооперативах и на госпредприятиях, а результат распространить на всю совокупность, то средняя фиктивна, так как рассчитана по неоднородной совокупности, и такая средняя теряет всякий смысл.

При помощи средней происходит как бы сглаживание различий в величинœе признака, которые возникают по тем или иным причинам у отдельных единиц наблюдения. К примеру, средняя выработка продавца зависит от многих причин: квалификации, стажа, возраста͵ формы обслуживания, здоровья и т.д.

Сущность средней в том и заключается, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием факторов базовых. Это позволяет средней отражать типичный уровень признака и абстрагироваться от индивидуальных особенностей, присущих отдельным единицам.

Средняя величина является отражением значений изучаемого признака, следовательно, измеряется в той же размерности, что и данный признак.

Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному признаку. Чтобы получить полное и всœестороннее представление об изучаемой совокупности по ряду существенных признаков, в целом крайне важно располагать системой средних величин, которые могут описать явление с разных сторон.

Существуют различные средние:

Средняя арифметическая;

Средняя геометрическая;

Средняя гармоническая;

Средняя квадратическая;

Средняя хронологическая.

Понятие средней величины в статистике - понятие и виды. Классификация и особенности категории "Понятие средней величины в статистике" 2017, 2018.

Тема 4

Основные вопросы: 1. Абсолютные статистические величины.

2. Виды абсолютных статистических величин.

3. Относительные величины.

4. Виды относительных величин.

5. Средняя величина. Виды средних величин.

6. Средняя арифметическая.

7. Средняя гармоническая.

8. Средняя геометрическая.

9. Средняя квадратическая и средняя кубическая.

10. Структурные средние.

11. Соотношения между средней арифметической, медианой и модой в статистических распределениях.

1. Абсолютные статистические величины. Чтобы отразить размер, объем явлений в статистике применяются абсолютные величины. Абсолютная величина (А.В.) получается в результате сводки статистического материала. А.В. выражаются в различных единицах измерения – натуральных, стоимостных (денежных), условных, трудовых.

1) Натуральные единицы измерения характеризуют величину и размер изучаемых явлений. Они выражаются в метрах, тоннах, литрах и т.д. Натуральные единицы можно суммировать только по однородным продуктам, нельзя сложить тонны стали с метрами ткани.

2) Стоимостные единицы применяются для оценки в стоимостном выражении многих статистических показателей: размер розничного товарооборота, ВВП, доходы населения и т.д.

3) Условные. В ряде случаев не все виды однородной продукции можно суммировать. Нельзя суммировать мыло (т.к. оно имеет различный процент жирности), топливо (различную калорийность) и т.д. У.е.и. применяют для учета однородной продукции различных разновидностей. Например, консервы выпускают в банках разной емкости. Поэтому их считают в тысячах условных банок. За одну условную банку принят вес продукции нетто 400 гр.

4) Трудовые единицы измерения – человеко-часы, человеко-дни и т.п. Используются для измерения трудовых ресурсов, затрат труда.

2. Виды абсолютных статистических величин. По способу выражения:

1) Индивидуальные – А.В., характеризующие размеры признака у отдельных единиц совокупности (например, зарплата отдельного работника, размер посевной площади конкретного фермерского хозяйства). Они получаются непосредственно в процессе статистического наблюдения и фиксируются в первичных учетных документах.

2) Суммарные А.В. – выражают величину того или иного признака всех единиц изучаемой совокупности или отдельных ее групп и получаются в результате суммирования индивидуальных А.В. (зарплата по предприятию).

А.В. всегда являются именованными числами. Они выражаются в определенных единицах измерения (кг, шт., тонны, га, м и т.п.).

В практической деятельности при отсутствии необходимой информации абсолютные величины получают расчетным путем, например на основе балансовой увязки:


где – запас на начало периода; – поступление за период; – расход за период; – запас на конец периода.

Отсюда .

Абсолютные статистические величины широко используют в анализе и прогнозировании состояния и развития явлений общественной жизни.

На основе А.В. исчисляют относительные величины.

3. Относительные величины (О.В.). Получаются в результате деления одной величины на другую. Числитель отношения – сравниваемая величина, ее называют текущей или отчетной величиной, знаменатель отношения называют базой сравнения или основанием сравнения.

Если база сравнения равна 100, то О.В. выражена в (%), если база сравнения 1 000 – промилле (‰), 10 000 – в продецимилле (‰0).

Сопоставляемые величины могут быть одноименными и разноименными. Если сравнивают одноименные величины, то их выражают в коэффициентах, процентах, промилле. При сопоставлении разноименных величин наименования относительных величин образуется от наименований сравниваемых величин: плотность населения – чел./км 2 , урожайность – ц/га и т.д.

4. Виды относительных величин (показателей).

1) планового задания – ОППЗ;

2) выполнения плана – ОПВП;

3) динамики (ОПД);

4) структуры (d);

5) интенсивности и уровня развития;

6) координации (ОПК);

7) сравнения (ОПС).

1) ОППЗ – служит для планирования. Вычисляется отношением уровня, запланированного на предстоящий период (П), к уровню показателя, достигнутому в предыдущем периоде ():

2) ОПВП – служит для сравнения реально достигнутых результатов с намеченными ранее.

,

– достигнутый уровень в текущем периоде; – план на этот же период.

3) ОПД – характеризует изменение уровня какого-либо экономического явления во времени и получается делением уровня признака за определенный период или момент времени на уровень этого же показателя в предыдущий период или момент времени. По другому, их называют – темпом роста. Вычисляются в коэффициентах или %.

4) d – характеризуют состав изучаемой совокупности, доли, удельный вес элементов совокупности в общем итоге и представляют собой отношение части единиц совокупности () ко всей численности единиц совокупности ():

5) Интенсивности и уровня развития – характеризуют степень насыщенности или развития данного явления в определенной среде, являются именованными и могут выражаться в кратных отношениях, %, ‰ и др. формах.

6) ОПК – характеризует отношение частей изучаемой совокупности к одной из них, принятой за базу сравнения. Они показывают, во сколько раз одна часть совокупности больше другой, или сколько единиц одной части приходится на 1, 10, 100, 1000 единиц другой части. Эти относительные величины могут быть исчислены как по абсолютным показателям, так и по показателям структуры.

7) ОПС – характеризуют отношения одноименных абсолютных или относительных показателей, соответствующих одному и тому же периоду или моменту времени, но относящиеся к различным объектам или территориям.

5. Средняя величина. Виды средних величин.

Определение : Средней величиной в статистике называется обобщающий показатель, характеризующий типичный уровень явления в конкретных условиях места и времени, отражающий величину варьирующего признака в расчете на единицу качественно однородной совокупности.

Виды средних величин: 1) арифметическая;

2) гармоническая;

3) геометрическая;

4) квадратическая;

5) кубическая.

Все эти средние относятся к классу степенных средних и объединяются общей формулой (при различных значениях m ):

,

где – среднее значение исследуемого явления;

– показатель степени средней;

– текущее значение осредняемого признака;

– число признаков.

В зависимости от значения показателя степени m различают следующие виды степенных средних:

при – средняя гармоническая ;

при – средняя геометрическая ;

при – средняя арифметическая ;

при – средняя квадратическая ;

при – средняя кубическая .

При использовании одних и тех же данных, чем больше m, тем больше значение средней величины:

– правило мажорантности средних.

Вид средней выбирается в каждом случае путем конкретного анализа изучаемой совокупности, он определяется материальным содержанием изучаемого явления.

6. Средняя арифметическая.

а) Средняя арифметическая простая применяется в тех случаях, когда объем варьирующего признака для всей совокупности является суммой значений признаков отдельных ее единиц (наиболее распространенная).

Часто приходится исчислять среднюю по групповым средним или по средним отдельных частей совокупности (частным средним), т.е. среднюю из средних. Так, например, средняя продолжительность жизни граждан страны представляет собой среднее из средних продолжительностей жизни по отдельным регионам данной страны.

Среднее из средних величин вычисляется по следующей формуле, считая :

,

где – число единиц в каждой группе.

Свойства средних величин:

1. Если все индивидуальные значения признака уменьшить (увеличить) в раз, тогда среднее значение нового признака соответственно уменьшится (увеличится) в раз.

;

2. Если варианты осредняемого признака уменьшить (увеличить) на , то средняя арифметическая соответственно уменьшится (увеличится) на то же число .

3. Если веса всех усредняемых вариантов уменьшится (увеличится) в раз, то средняя арифметическая не изменится.

4. Сумма отклонений от средней равна нулю.

7. Средняя гармоническая. Применяется в тех случаях, когда не известны частоты по отдельным вариантам x совокупности, а представлено их произведение . Обозначим это произведение через , тогда получим формулу средней гармонической взвешенной:

.

является преобразованной формой и тождественна ей. Вместо всегда можно рассчитать , но для этого нужно определить веса отдельных значений признака, скрытые в весах средней гармонической.

В тех случаях, когда вес каждого варианта равен единице, применяется средняя гармоническая простая :

,

где – отдельные варианты обратного признака, встречающиеся по одному разу,

– число вариантов.

Если по двум частям совокупности (численности и ) даны средние гармонические, то общую среднюю гармоническую по всей совокупности можно представить как взвешенную гармоническую среднюю из групповых средних:

.

8. Средняя геометрическая. Применяется, когда индивидуальные значения признака характеризует средний коэффициент роста (представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики). Вычисляется по формуле:

– число вариантов; – знак произведения.

Наиболее широко применяется для определения средних темпов изменения в рядах динамики, а также в рядах распределения (рассмотрим ее применение позднее).

9. Средняя квадратическая и средняя кубическая.

– применяется для вычисления средней величины стороны n квадратных участков, диаметров труб и т.п.

Определение: Мода ()– значение случайной величины, встречающееся с наибольшей вероятностью в дискретном вариационном ряду – вариант, имеющий наибольшую частоту.

Широко используется при изучении покупательского спроса, регистрации цен и т.п.

Формула для вычисления:

,

где – нижняя граница модального интервала;

– частоты в модальном, предыдущем и следующем за модальным интервалом (соответственно).

Модальный интервал определяется по наибольшей частоте.

Определение: Медиана – варианта, которая находится в середине вариационного ряда.

Делит ряд на две равные (по числу единиц) части – со значениями признака меньше медианы и со значением признака больше медианы.

Мода и медиана, как правило, отличаются от значения средней, совпадая с ней только в случае симметричного распределения частот вариационного ряда. Поэтому соотношение моды, медианы и средней арифметической позволяет оценить асимметрию ряда распределения.

Мода и медиана, как правило, являются дополнительными к средней характеристиками совокупности и используются в математической статистике для анализа формы рядов распределения.

Аналогично медиане вычисляются значения признака, делящие совокупность на четыре равные (по числу единиц) части – квартили, на пять – квинтили, на десять – децили, на сто – перцентили.

Средняя величина является наиболее ценной с аналитической точ­ки зрения и универсальной формой выражения статистических пока­зателей. Наиболее распространенная средняя - средняя арифметичес­кая - обладает рядом математических свойств, которые могут быть использованы при ее расчете. В то же время при исчислении конкрет­ной средней всегда целесообразно опираться на ее логическую фор­мулу, представляющую собой отношение объема признака к объему совокупности. Для каждой средней существует только одно истинное исходное соотношение, для реализации которого, в зависимости от имеющихся данных, могут потребоваться различные формы средних. Однако во всех случаях, когда характер осредняемой величины под­разумевает наличие весов, нельзя вместо взвешенных формул сред­них использовать их невзвешенные формулы.

Средняя величина - это наиболее характерное для совокупности значение признака и распределенный равными долями между единицами совокупности раз­мер признака совокупности.

Признак, для которого рассчитывается средняя величи­на, носит название осредняемый .

Средняя величина - показатель, рассчитываемый сопоставлением абсолютных или относительных величин. Среднюю величину обозначают

Средняя величина отражает влияние всех факторов, влия­ющих на исследуемое явление, и является для них равнодей­ствующей. Другими словами, погашая индивидуальные откло­нения и устраняя влияние случаев, средняя величина, отражая общую меру результатов этого действия, выступает общей закономерностью изучаемого явления.

Условия применения средних величин:

Ø однородность исследуемой совокупности. Если некоторые подверженные влиянию случайного фактора элементы совокупности имеют значитель­но отличающиеся от остальных величины изуча­емого признака, то данные элементы повлияют на размер средней для данной совокупности. В этом случае средняя не будет выражать наиболее ти­пичную для совокупности величину признака. Если исследуемое явление неоднородно, требуется его разбивка на содержащие однородные элементы группы. В данном случае рассчитывают средние по группам - груп­повые средние, выражающие наиболее характерную вели­чину явления в каждой группе, а затем рассчитывается об­щая средняя величина для всех элементов, характеризующая явление в целом. Она рассчитывается как средняя из группо­вых средних, взвешенных по числу включенных в каждую группу элементов совокупности;

Ø достаточное количество единиц в совокупности;

Ø максимальное и минимальное значения признака в изучаемой совокупности.

Средняя величина (показатель) – это обобщенная количественная характеристика признака в систематической совокупности в конкретных условиях места и времени .

В статистике применяется следующие формы (виды) средних величин, называемых степенными и структурными:

Ø средняя арифметическая (простая и взвешенная);

простая