» »

Научно технические изобретения 20 века. Отечественная военная техника XIX – начала XX века

20.09.2019

Подъём промышленного производства, транспорта, средств связи, рост индустриализации государства – всё это способствовало успешному развитию в России естественных наук. В этот период был сделан ряд открытий в естествознании (система наук о природе) и технике.

От истории, экономики, социологии, т.е. гуманитарных наук время требовала новых подходов и осмысления, объяснения прошлого и настоящего.

В этот период времени появляются такие имена в науке как:

1). Жуковский Николай Егорович (ум. 1921) – отец русской авиации и авиадинамики. По его трудам в Московском университете была создана аэродинамическая труба и основан Аэродинамический институт.

2). Циолковский Константин Эдуардович (1м.1935) – российский и советский учёный самоучка, исследователь и школьный учитель. Был одним из пионеров космонавтики. Обосновал выводы уравнения реактивного движения. Пришёл к выводу об использовании многоступенчатых ракет, т.н. многоступенчатых ракет.

3). Вернадский Владимир Иванович (ум. 1945) – академик, естествоиспытатель. Создатель многих научных школ. Один из представителей русского космизма; создатель науки биогеохимии. В круг его интересов входили геология и кристаллография, минералогия и геохимия, организаторская деятельность в науке и общественная деятельность, радиогеология и биология, биогеохимия и философия. Его прозвали Ломоносовым 20 века. Предсказал расщепления Атома и какую опасность несёт это расщепление.

4). В 1904 году академику Павлову Ивану Петровичу (ум. 1936) присуждена Нобелевская премия за исследования в области физиологии пищеварения и Высшей нервной деятельности.

5). В 1908 году биологу Мечникову Илье Ильичу (ум. 1916) присуждена Нобелевская премия за исследования в области физиологии и медицины, за открытие фагоцитоза и клеточного пищеварения.

Открывались научно-исследовательские центры и не только в центральных регионах России: географические, астрономические, антропологические, минералогических, электромеханических, воздухоплавания и др. Проводились научные съезды и конференции. Русские учёные регулярно выезжали за рубеж.

6) Ключевский Василий Осипович (ум.

1911) был «патриархом» всех русских историков, он автор знаменитого 5-титомного «Курса русской истории».

Известность получили труды того времени С.Ф. Платонова, Н.А. Рожкова, В.И. Семевского, Ю.В. Готье. Разрабатывались новые темы по истории крестьянства, внутренней и внешней политике России, и общественной мысли, движение декабристов; поднимались проблемы феодализма на Руси.

Получили известность «религиозные философы»: Бердяев Николай Александрович (представитель экзистенциализма), Булгаков Сергей Николаевич (депутат 2-й Г.Д., богослов, представитель русской религиозной философии), Флоренский Павел Александрович (богослов, учёный, поэт, религиозный философ).

Крупные труды в области филологии (совокупность наук по литературоведению и слову) были созданы: Шахматовым Алексеем Александровичем, который провёл исследования по русскому летописанию и древнерусской литературе, заложил основы русского литературного языка, редактор академического словаря «Словарь русского языка», Бодуэн де Куртенэ Иван Александрович, профессор, лингвист оказал влияние на развитие общего языкознания (языковед), выступал за равноправие русского и польского языков, арестовывался царскими властями, выступал за культурную независимость Польши. Под его редакцией в 1903-1914 годах вышли дополненные издания словаря Даля Владимира Ивановича.

Появилось много изданий, которые пропагандировали достижения русской науки среди широких кругов населения, например, журналы: «Вокруг Света», «Научное обозрение», «Природа и люди», а также популярные книги Н.А. Рубакина «Россия в цифрах», Я.И. Перельмана «Занимательная физика», А.А. Игнатьева «В царстве смекалки». Число периодических изданий и журналов быстро росло: 1900 год – 125 наименований, 1913 год – 1130 наименований.

Росло число университетов и гимназий, в т.ч. и негосударственных, т.н. «народные университеты» и, как следствие, возросло число учащихся и увеличился общий фон образованности населения. Развивались типографии и библиотеки (до 76 тыс.). Был быстрый рост культурно-просветительских и образовательных обществ по всей империи (за 20 лет увеличились в 8 раз).

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме 37. Развитие науки и техники в конце 19 начале 20 века:

  1. 19. Развитие астрономии в конце XVI - начале XVII века. Тихо Браге, Кеплер.
  2. 22. Математика в конце XVI - начале XVII века Мнимые числа. Логарифмы. Десятичные дроби. Развитие алгебры. Виет. Ферма.
  • Часть 2. Хрестоматия: инженерия и антропология техники Философия техники: истоки и современность
  • Раздел 3. Научное познание и инженерия
  • Природа техники. Техника и человек
  • Тема 10. Техника и этика: зоны сочленения и демаркации (интерпретация представителей инженерного направления) Инженерная деятельность с точки зрения этической и социальной ответственности
  • Ответственность в технике, за технику, с помощью техники
  • Тема 11. Техника и точная наука Техника и естествознание
  • Тема 12. Социотехнические проектирование и его специфика Социотехническое проектирование
  • Раздел 4. Антропология техники:
  • Вопрос о технике
  • Тема 14. Роль техники в новоевропейской культуре: техника и общественное устройство, техника как объективация человеческой деятельности Миф машины
  • Другая революция
  • Тема 15. Электронная коммуникация в современном мире Понимание медиа: внешние расширения человека
  • Часть I. Введение
  • Глава 31. Телевидение. Застенчивый гигант
  • Почему телевизионный ребенок не умеет заглядывать вперед?
  • Убийство по телевидению
  • Тема 16. Техника и человек в информационном обществе Ксерокс и бесконечность
  • Часть 3. Практикум
  • Тема 2. Специфика научного познания
  • Тема 3. Возникновение науки и основные стадии ее исторической эволюции
  • Тема 4. Особенности современного этапа развития науки и техники. Перспективы научно-технического прогресса
  • Проверочный тест
  • Раздел 2. Философия техники, ее предмет и круг проблем
  • Семинар 2
  • Тема 6. Формирование технических наук
  • Семинар 3
  • Тема 7. Развитие техники в XX веке
  • Контрольные задания и вопросы для самопроверки
  • Семинар 4
  • Тема 8. Социальные проблемы развития современных технологий
  • Контрольные задания и вопросы для самопроверки
  • Раздел 3. Научное познание и инженерия.
  • Тема 10. Техника и этика: зоны сочленения и демаркации (интерпретация представителей инженерного направления) а. Хунинг. Инженерная деятельность с точки зрения этической и социальной ответственности
  • Х. Ленк. Ответственность в технике, за технику, с помощью техники
  • Тема 11. Техника и точная наука
  • Тема 12. Социотехническое проектирование и его специфика в. Г. Горохов. Социотехническое проектирование
  • Проверочный тест
  • Раздел 4. Антропология техники:
  • Гуманистическое направление в философии техники
  • Контрольные задания для самостоятельной работы
  • Задание 1 . Аннотации статей
  • Задание 2. Работа по глоссарию
  • Раздел 5. Реферативная работа по курсу философия техники Темы рефератов
  • Требования к написанию рефератов
  • Текстовый реферат
  • Презентация реферата
  • Раздел 6. Глоссарий Словарь базовых философских терминов по общим и отраслевым проблемам философии науки17
  • Библиографический список Основной:
  • Дополнительный
  • Оглавление
  • Тема 7. Развитие техники в XX веке

    В конце XVI II – начале XIX в. сформировалось машинно-фабричное производство, основой и исходным пунктом которого стало развитие системы машин. Мощный толчок для механизации производства дало изобретение в конце XVIII в. парового двигателя. Однако для победы крупной машинной индустрии необходим был переход на машинную систему производства машин. Ручное изготовление машин приводило к их дороговизне, к небольшим объемам выпускаемых изделий, а сам процесс производства был крайне медленным. Кроме того, такое производство не в состоянии было обеспечить решение возрастающих технических задач, связанных с усложнением машин, увеличением их габаритов, веса, мощностей, скоростей, повышением надежности и точности изготовления механизмов. Очевидно, что для победы крупной машинной индустрии необходим был переход на машинную систему производства машин. Поэтому постепенно производство машин выделяется в отдельную отрасль промышленности, возникает новая отрасль производства – машиностроение .

    Развернулся массовый выпуск разнообразных машин. К концу XIX века было создано крупное машинное производство и соответствующая машинная техника. Введение машин ознаменовало начало промышленного переворота. После создания универсальной паровой машины Дж. Уаттом и решающих сдвигов в области металлургии и металлообработки наступает эпоха «пара, железа и угля». В первые десятилетия XIX века на путь промышленного переворота одна за другой становятся страны Европы и Северной Америки.

    Машинно-фабричное производство приводит к уменьшению ручного труда, замены его машинным, сокращает затраты труда, увеличивает производство промышленной продукции, в целом, внедрение машин в производство означало огромный рывок вперед. Постепенно машины проникли во все важнейшие отрасли производства и вызвали качественные сдвиги в энергетике, металлургии, химической технологии, технике строительного дела, военной технике, средствах связи и массовой информации. С помощью машин производилось сложное машинное оборудование, аппараты, приборы, изделия производственного и бытового назначения. Внедрение машин приводит к возникновению новых отраслей техники и новых видов транспорта. Громадный рост этих сфер производства стимулировал технический прогресс промышленности в целом и в особенности машинной индустрии. Машиностроение стало основой основ всего машинного производства. Так до начала первой мировой войны объем продукции машиностроительной промышленности вырос в 5,5 раз. Около 8 процентов всей машиностроительной продукции было сконцентрировано в Англии, США и Германии.

    С внедрением машин начинает интенсивно развиваться транспортная сеть. Настоящую революцию в транспорте произвело изобретение паровоза (1814 г.) и строительство железных дорог, начавшееся в 1825 г. Если в 1830 г. общая длина железнодорожных линий в мире составляла всего 300 км, то к 1917 г. она достигла 1 млн. 146 тыс. км. Крупные технические сдвиги происходят в водном транспорте: увеличиваются размеры и водоизмещение кораблей, повышаются их скоростные характеристики и надежность. Железные дороги и пароходы сыграли важную роль в дальнейшей индустриализации. Они стали главными артериями промышленности. По ним доставлялось сырье и готовая продукция к месту назначения. Большую роль в развитии транспорта сыграло строительство мостов, каналов и гидротехнических сооружений. В 1869 г. был открыт Суэцкий канал, сокративший путь из Европы в страны Юго-Восточной Азии почти на 13 тыс. км. В 1914 г. завершилось строительство Панамского канала, связавшего Атлантику с Тихим океаном.

    Являясь главным потребителем металла и угля, транспорт стимулирует рост горнодобывающей и топливной промышленности, металлургии и особенно таких отраслей машинной индустрии, как производство паровозов, пароходов, вагонов, специальных железнодорожных машин и оборудования, средств механизации для складов, портов и т.п.

    Одной из характерных особенностей технического прогресса этого периода является мощное развитие изобретательской деятельности. Так как технические изобретения были тесно связаны с научными открытиями, то основой технического перевооружения промышленности стало широкое использование достижений естественных наук. Вместе с тем усилилось формирование и развитие технических наук: одни ученые разрабатывали идеи в какой-либо отрасли науки, другие проверяли их в лабораториях при институтах и университетах. В ходе таких экспериментов выявлялись пути практического применения того или иного научного открытия, так, например, произошло с изучением электричества.

    Все более острой становится проблема двигателя в машине. Паровые машины оставались основными энергетическими машинами на протяжении всего XIX в. Паровые машины совершенствовались, насколько это возможно. Однако оказалось, что увеличение мощности паровых машин возможно лишь до определенных пределов. Паровая машина все более ограничивала дальнейшее развитие машинного производства. Паровой привод был громоздким, немобильным, создавал большие трудности для передачи и распределения энергии по отдельным рабочим машинам. К тому же источники топлива по мере их истощения все более отдалялись от мест потребления. Выход из положения мог быть найден только в создании новой энергетической базы машинного производства. Этой базой явилась электроэнергетика.

    Наука об электричестве привела к созданию электротехнической промышленности, которая стала служить человеку. В 1860 г. был создан первый двигатель внутреннего сгорания, ставший прообразом современных моторов. Электродвигатель сделал привод машин надежным, удобным и экономичным. Внедрение электрического привода стало наиболее характерной чертой развития машиностроения в этот период. Паровая машина перестает быть универсальным двигателем. Фирма «Сименс» в 1880 г. произвела первый электропоезд. Появилось электрическое освещение городских улиц, жилых домов, общественных и производственных помещений, в прошлое ушла конка, на улицах европейских городов загрохотали трамваи, оповестившие мир о начале новой эпохи электричества.

    На рубеже XIX–XX вв. началось стремительное развитие электротехники и электроэнергетики. В результате существенно снизилась себестоимость электроэнергии, заметно увеличилось число часов использования установленной мощности электростанций. В 80-х годах электрическая энергия стала проникать в промышленность и транспорт как двигательная сила. На рубеже XIX–XX вв. электрическая техника существенно изменила энергетическую базу. Электропривод, электрическая технология и электрическое освещение коренным образом преобразуют технику и революционизируют промышленное производство. Вошли в строй крупные электротехнические заводы. Электрификация стала мощным средством повышения производительности и культуры труда. Началось стремительное развитие электротехники и электроэнергетики. В результате существенно снизилась себестоимость электроэнергии, заметно увеличилось число часов использования установленной мощности электростанций. Проникновение электрической энергии в промышленность явилось основным стимулом развития и укрупнения электростанций. Это создавало реальные предпосылки для массовой электрификации промышленности, транспорта и быта. Электродвигатель коренным образом изменил процесс приведения в движение рабочих машин, сделал привод машин надежным, удобным, экономичным 9 .

    В народном хозяйстве центральной фигурой являлся производитель, а предприятия ориентировались на количественные показатели, на «вал». Но к концу XIX века технология уже перестает иметь решающее значение, на первое место выходят факторы управления и организации труда. Соответственно в народном хозяйстве центральной фигурой становится не производитель, а потребитель.

    Одной из развитых индустриальных стран того времени являлись США, в которых к началу XX в. промышленное производство вышло на передовые рубежи технологического прогресса. Тем не менее, рост промышленного производства там сдерживался устаревшим управлением. Несоответствие между технологией и отсталой организацией труда в тот период времени в США было более глубоким, чем в других развитых индустриальных странах. Для решения этой проблемы в США была выдвинута конструктивная программа обновления производства. Одним из тех, кто осознал эту потребность и предложил новый подход к организации труда был американский инженер Ф.У. Тейлор (1856–1915), который по праву считается основателем теории современного научного менеджмента и системы научного управления. Тейлор положил начало рационализации производства. Наряду с рациональным использованием техники столь же важным, согласно Тейлору, является и эффективное использование человеческих ресурсов. Система идей Тейлора по организации труда и управления производством и продолженная его последователями получила название «тейлоризм».

    Тейлоризм представляет собой систему методов организации и нормирования труда и управления производственными процессами, а также методов подбора, расстановки и оплаты рабочей силы. Тейлор определяет смысл и цель своей концепции как «Максимальная прибыль предпринимателя». По мнению Тейлора роста производительности труда можно достичь лишь путем принуждения на основе научной организации труда. Тейлор считал, что управлять работником можно исключительно на основе материального стимулирования и системы тщательного контроля. При установлении нормы выработки Тейлор выбирал наиболее физически сильного, ловкого и искусного рабочего, предварительно обученного самым совершенным методам труда. Показатели выработки этого рабочего, зафиксированные поэлементно с помощью хронометражных наблюдений, устанавливались в качестве нормы, обязательной для выполнения всеми рабочими. Это дало возможность устанавливать высокие нормы выработки, что в свою очередь приводило к резкой интенсификации труда. Чтобы материально заинтересовать рабочих в выполнении и перевыполнении этой высокой нормы, Тейлор разработал специальную систему заработной платы, в соответствии с которой рабочие, выполнившие и перевыполнившие норму, оплачивались по повышенным, по сравнению обычными, тарифными ставками и расценками, а рабочие, не выполнившие норму, оплачивались по пониженным ставкам. По сути дела Тейлор видел в работнике некий придаток машины. Концепция тейлоризма исходит из убеждения, что рост производительности труда возможен главным образом при принудительном введении стандартизации методов, орудий, приемов труда, при чисто механическом выполнении необходимых операций.

    Главным принципом тейлоровской системы стали наибольшая эффективность использования времени машин и сокращение времени на выполнения каждой операции рабочим. Конечно, подобные нововведения способствовали повышению производительности труда. На автомобильных предприятиях Г. Форда система Тейлора нашла свое дальнейшее развитие. На них была предложена новая техническая система, основанная на использовании конвейеров, стандартизации деталей и узлов машин, типизации производственных процессов.

    Труды Тейлора значительно повлияли на развитие промышленности Соединенных Штатов. Введение тейлоризма на американских предприятиях в начале XX в. привело к резкому росту интенсивности труда. Впервые тейлоровская система организации труда была в полном объеме применена на конвейерах автомобилестроительных заводов Форда в США в 20-х гг. XX вв. Рабочих, не выдерживавших высоких темпов труда, либо переводили на хуже оплачиваемые работы, либо увольняли. Система Тейлора стала распространяться на промышленных предприятиях США, а затем и других стран.

    Его идеи получили широкое признание в Германии, Англии, Франции, а в начале 20-х годов при поддержке В.И. Ленина и в советской России. До 1920 года Ленин подверг тейлоризм резкой критике, называя систему Тейлора ««научной» системой выжимания пота» 10 , «системой порабощения человека машиной» 11 . Однако с введением НЭПа Ленин призвал изучать и пропагандировать принципы и методы Тейлора. Поэтому в период НЭПа велось строительство и изучение научной организации труда, принципы и методы которой были основаны на теоретической базе тейлоризма. Но после смерти Ленина, к концу 30-х годов научно-исследовательские центры научной организации труда прекратили свое существование.

    Чаще всего Тейлора упрекают в том, что для него рабочий является ничем иным как бездушным продолжением машины. Тейлоризму свойственны технократический подход и недооценка роли психологического фактора в производственном процессе, что очень скоро это привело падению престижа этой теории и в Америке, и в Европе. Среди работников предприятий, где активно применялась эта система, все чаще стали обнаруживаться такие явления, как апатия, подавленность, потеря всякого интереса к работе, повышенная раздражительность и прочие тревожные явления.

    Последователи прогрессивных, но противоречивых взглядов Тейлора стали развивать идею теоретика и рационализатора о том, что капитализм способен развиваться не за счет интенсификации, угубления труда, а за счет экономии необходимого труда. Так как использовать рабочих как простых заменителей машин, дешевой мускульной силы невыгодно, полагали они, нужно исходить из того, что добиться огромного роста производства можно не за счет уменьшения заработной платы и не за счет интенсификации труда, а за счет замены живого труда техническими системами, а в будущем роботами.

    Развитие современной техники в отечественной истории техники получило название научно-техническая революция (НТР). Научно-техническая революция в значительной степени определила характер общественного прогресса на рубеже второго и третьего тысячелетий.

    Одной из сущностных характеристик НТР является резкое ускорение развитие науки и техники. Свои первые шаги научно-техническая революция (НТР) сделала в 50-х годах XX в. Наука все в большей степени начинает определять пути дальнейшего развития техники, а техника, в свою очередь, начинает развиваться под решающим воздействием научных знаний. Естественнонаучные и технические революции никогда ранее не совпадали. Они не только не совпадали по времени, но и не были связаны между собой. Во второй половине XX века наука начинает во все большей степени определять пути дальнейшего развития техники.

    Важную роль в подготовке научно-технической революции сыграли успехи естествознания, произошедшие на рубеже XIX–XX вв. Этот период явился периодом революционных открытий в различных областях естественных наук и ломки старых представлений о мире. Ядром революции в естествознании явилась физика, которая повлияла на остальные естественнонаучные дисциплины. Великими теоретическими достижениями этого периода являются квантовая теория М. Планка (1900 г.), специальная и общая теория относительности А. Эйнштейна (1905-1916), атомная теория Резерфорда-Бора (1913 г.), квантовая теория Резерфорда (1925 г.). Наука вышла на уровень познания микропроцессов, на уровень атома и элементарных частиц.

    Ядерная физика воздействовала на развитие химии, астрономии, биологии, медицины и т.д. Большое значение имели успехи химической науки в области создания искусственных материалов (искусственный каучук, полимерные материалы, искусственные волокна и т.д.). В 50-х годах было открыто строение ДНК. Это открытие определило развитие биологии XX века. Началось проникновение в механизм наследственности, развивается генетика, формируется хромосомная теория. Наука достигла нового уровня понимания природы и усовершенствования технической и методологической стороны познания.

    На базе успехов в фундаментальных областях науки происходит расцвет многих прикладных исследований и инженерных разработок. Возникает устойчивая система «наука-техника-производство». На основе науки возникают качественно новые отрасли производства, которые не могли возникнуть из производственной практики (ядерная энергетика, радиоэлектроника, вычислительная техника и др.) Решающее воздействие науки на развитие техники в свою очередь приводит к качественным изменениям в средствах производства, к появлению наукоемких технологий и отраслей производства.

    Первый этап НТР начинается в середине XX века и продолжается до середины 70-х годов. Важнейшей чертой первого этапа стала автоматизация производственных процессов, машина стала осуществлять непосредственный контроль над своей работой. В XVIII в. человек передает машине сначала исполнительские функции, затем двигательные и энергетические, а впоследствии и логические и вычислительные. Автоматизация производства повышает эффективность и производительность труда, улучшает качество выпускаемой продукции, создает условия для оптимального использования всех ресурсов производства. Появляется новый класс машин – управляющие машины, которые могут выполнять самые разнообразные и часто весьма сложные задачи управления производственными процессами, движением транспорта и т.д., что позволяет перейти от автоматизации отдельных станков и агрегатов к комплексной автоматизации конвейеров, цехов, целых заводов. Вычислительная техника используется теперь не только для управления технологическими процессами, но и в сфере управления народным хозяйством, экономики и планирования.

    Область умственной деятельности до недавнего времени казалась совершенно недоступной механизации. Первые электронно-вычислительные машины (ЭВМ) появляются в первой половине XX в. Первое поколение ЭВМ создавалось на лампах, которые использовались в довоенных радиоприемниках. Первая вычислительная машина была сконструирована в 1941 г. американским инженером Д.П. Эккартом и физиком Д.У. Маугли , которая предназначалась для решения задач баллистики. Эта ЭВМ имела 18 тысяч ламп и 15090 реле. Для размещения машины необходим был зал площадью 150-200 м 2 . ЭВМ второго поколения начали создаваться после изобретения в 1947-1948 гг. в США транзистора – небольшого полупроводника, заменившего в ЭВМ лампу. Первые серийные ЭВМ на транзисторах появились в 1958 г. одновременно в США, ФРГ и Японии. С появлением полупроводников уменьшились размеры ЭВМ и затраты на их создание. Третье поколение ЭВМ создаётся и быстро совершенствуется на базе так называемых интегральных схем: 60-е годы – малоразмерные схемы, вторая половина 60-х годов – среднеразмерные схемы, 70-е годы – большеразмерные схемы (от нескольких тысяч до миллиона компонентов). В 1975 г. машина уже выполняла 100 млн. операций в секунду. Четвертое поколение ЭВМ пришло с изобретением микропроцессора – разновидности интегральной схемы, представляющий собой кремниевый кристалл «чип» размером около 1 см 2 . С помощью лазера на «чипе» фиксируются многие тысячи полупроводников. Микропроцессор ЭВМ на «микрочипах» впервые был создан в 1971 г. и состоял из 2250 полупроводников и запоминающим устройством. Кристалл, площадью 1 см 2 с помощью магнитных волн может «запоминать» около 5 млн. бит информации. С 1970 г. появляются компьютеры. С 1980 по 1995 год объём памяти стандартного персонального компьютера вырос более чем в 250 раз. И, наконец, ЭВМ пятого поколения воспринимают нечисловую информацию (голос). Словарный запас состоит из примерно 10 тысяч слов.

    Первые ЭВМ были неэкономичны, очень ненадежны и мало напоминали современные микрокомпьютеры. И, тем не менее, их появление ознаменовало громадный прорыв в новую область. В новой технике был заложен огромный потенциал, оказавший огромное влияние на развитие общества. ЭВМ изменила положение и роль человека в процессе производства, ЭВМ стали символом НТР. Их появление ознаменовало начало постепенной передачи машине выполнение логических функций человека. Появление и дальнейший прогресс в развитии ЭВМ привели к комплексной автоматизации производства. После изобретения компьютера, позволяющего хранить, перерабатывать и выдавать информацию, роль информации в жизни человека все увеличивается. Компьютеры предоставили совершенно новые возможности для поиска, получения, накопления, передачи и обработки информации. Теперь в основе глубинных изменений в экономической и социальных структурах лежит нарастание значения информации в жизни общества. И в этой связи можно говорить об информационной революции .

    Принято считать, что в истории человечества было три информационных революции. Первая была вызвана изобретением письменности ; вторая – книгопечатанием. Третья информационная революция связана с появлением глобальной информационной компьютерной сети интернет. Интернет считается одним из самых впечатляющих созданий современной техники, а появление и распространение интернета ставит вопрос о том, что в ближайшие годы основным источником информации для человека станут средства компьютерной сети. Выпуск различной информационной техники стал одной из новейших наукоемких отраслей промышленности.

    НТР сразу развивается по многим направлениям. Среди главных направлений НТР первого этапа стали электронно-вычислительная и ракетно-космическая техника, атомная энергетика . Новые открытия и изобретения 70-80-х годов породили второй этап НТР.

    Второй этап начинается со второй половины 70-х годов и продолжается до сих пор. Наряду с механизацией и химизацией интенсивно развивается насыщение всех сфер деятельности электронно-вычислительной техникой; комплексная автоматизация; перестройка энергетического хозяйства, основанная на энергосбережении, совершенствовании структуры топливно-энергетического баланса, использовании новых источников энергии; производство принципиально новых материалов; возникновение и развитие космонавтики. На этом этапе появляются новые технологии: технология изготовления новых материалов, лазерная технология, биотехнология, микроэлектроника, генная инженерия, нанотехнология и др. Эти направления предопределяют облик современного производства. Все это заставляет не без оснований называть XX век веком техники. В результате научно-технической революции происходит преобразование индустриального общества в постиндустриальное.

    Вопросы для самопроверки

      Основной вопрос компьютерной этики это вопрос о правильном и неправильном использовании информации в информационном обществе. Как бы вы обосновали этот вопрос?

      Каково соотношение между свободой информации и контролем над ней?

      Плутарх писал об Архимеде: «Сам Архимед считал сооружение машин занятием, не заслуживающим ни трудов, ни внимания; большинство их появилось на свет как бы попутно, в виде забав геометрии… Архимед, считая сооружение машин и вообще всякое искусство сопричастное повседневным нуждам, низменным и грубым, все свое рвение обратил на такие занятия, в которых красота и совершенство пребывают несмешанными с потребностями жизни…». Каков был статус технического знания и практической деятельности в античной культуре? В чем причины такого отношения? Какие технические достижения античной эпохи вы знаете?

      В Акте городского Совета г. Кельна, в 1412 г., говорится: «Да будет известно, что к нам явился Вальтер Кёзингер, предлагавший построить колесо для прядения и кручения шелка. Но, посоветовавшись и подумавши со своими друзьями, Совет нашел, что многие в нашем городе, которые кормятся этим ремеслом, погибнут тогда. Поэтому было постановлено, что не надо строить и ставить колесо ни теперь, ни когда-либо впоследствии». Как в дальнейшем будет преодолено это препятствие техническому прогрессу? Не возникало ли подобных ситуаций в последующем? Что вы знаете о состоянии техники в Средние века?

      Историк науки М.А. Гуковский в книге «Механика Леонардо да Винчи» пишет об эпохе Возрождения: «Техника доходит до состояния, в котором дальнейшее продвижение оказывается невозможным без насыщения ее наукой. Повсеместно начинает ощущаться потребность в создании новой технической теории, в кодификации технических знаний и в подведении под них некоего общего теоретического базиса. Техника требует привлечения науки». В чем автор прав, какие стимулы для развития научно-технического знания возникают в эпоху Возрождения? Какие факты истории технических наук, развития техники противоречат мнению автора?

      Академик Н.А. Моисеев в книге « Математика ставит эксперимент» в 1979 г. писал: «Два открытия можно поставить в один ряд с ЭВМ – это огонь и паровая машина». Какие другие изобретения претендуют на роль лидера технического прогресса?

      С чем связано наступление эпохи «пара, железа и угля»?

      Назовите основные достижения техники на рубеже XIX–XX вв.?

      Когда и почему паровая машина перестает быть универсальным двигателем

      Чем было вызвано коренное перевооружение всей экономики в конце XIX–XX вв.?

      Почему машиностроение стало основой основ всего машинного производства?

      Ваша оценка тейлоровской системы организации труда?

      Что такое научно-техническая революция?

    Стрелковое оружие

    В домонополистический период капитализма вооружение все еще состояло из гладкоствольных (с середины XIX в. нарезных) ружей, сравнительно немногочисленной артиллерии с ограниченными скорострельностью и дальностью стрельбы и холодного оружия. Эпоха империализма в военно-технической области произвела настоящий переворот, связанный с моторизацией и механизацией многомиллионных армий, применением машинной техники, усилением мощности и ударной силы вооружения.
    В последней четверти XIX в. армии развитых стран заменили стрелковое оружие. Еще в 1860 г. были сконструированы и впервые применены в ходе Гражданской войны в США винтовки Спенсера с семизарядным магазином и Генри с магазином на 15 патронов. Но эти винтовки из-за маломощности патрона по сути были оружием охотничьего, а не армейского назначения. Однако тенденция развития этого вида оружия была определена правильно, и в 80 — 90-е гг. магазинные винтовки получили Франция (конструктор Лебель), Германия (Маузер), Австро-Венгрия (Маннлихер), Россия (Мосин), армии других стран. Отличительная особенность этих винтовок состояла в простоте и надежности конструкций, уменьшении калибра при увеличении поражающей способности пули, увеличении дальности огня до 2,5—3 км и скорострельности до 15 выстрелов в минуту, или втрое.
    Конец XIX в. отмечен появлением автоматического оружия. В 1883 г. американский изобретатель Хайрем Максим создал станковый пулемет, получивший название по фамилии конструктора. Впервые этот вид оружия применили в англо-бурской войне 1899—1902 гг. В последовавших затем других войнах пулеметы Максима в полной мере раскрыли свои боевые возможности. Его модификации были приняты на вооружение армиями многих стран, в том числе Англии, Германии, России. На фронтах Первой мировой войны нашли широкое применение резко усилившие огневую мощь пехоты ручные пулеметы: французские системы Гочкиса и Шоша, английские — Льюиса.

    Развитие артиллерии в начале 20-го века

    По сравнению с периодом франко-прусской войны намного улучшились технические характеристики артиллерии. Удвоились ее дальнобойность (с 3,8 до 7-8,5 км) и скорострельность (с 3-5 до 5-11 выстрелов в минуту). В армиях европейских стран использовались полевые легкие пушки калибра от 75 до 77 мм и тяжелые — 100—150-миллиметровые. Для уничтожения закрытых целей навесным огнем предназначались 100—200-миллиметровые гаубицы. Осадная артиллерия служила для действий против крепостей и полевых укреплений. Наиболее мощными осадными орудиями располагала Германия. В 1918 г. на боевую позицию была установлена пушка «Колоссаль», сконструированная фирмой Круппа. Она имела калибр 203 мм, длина ствола составляла 33,5 м, дальнобойность достигала 120 км, вес снаряда равнялся 123 кг. Эта пушка с 23 марта в течение 44 дней выпустила по Парижу 303 снаряда, из которых 183 упали в черте города.
    Первая мировая война поставила перед артиллерией ряд новых задач. С расширением возможностей и активизацией авиации ускорилось начавшееся еще до войны развитие противосамолетных орудий: либо приспособленных легких полевых пушек, либо специально сконструированных зенитных. Появление на поле боя танков вызвало контрмеры: средства борьбы с ними включали малокалиберную 20—37-миллиметровую артиллерию, противотанковые ружья, крупнокалиберные пулеметы. Для огневой поддержки войск в полосе железных дорог действовали артиллерийско-пулеметные бронепоезда.

    Авиация в начале 20-го века

    К самолетам как средству вооруженной борьбы впервые примерились в 1910 г., когда во Франции к военным маневрам привлекли 4 дирижабля и 12 аэропланов. Первый боевой опыт военная авиация получила в 1911—1912 гг. во время войны Италии с Турцией: 9 итальянских самолетов занимались разведкой и бомбометанием. В Балканской войне 1912—1913 гг. в составе болгарской армии действовал русский добровольческий авиационный отряд, а всего страны Балканского союза имели около 40 самолетов. Они занимались аэрофотосъемкой, корректировкой артиллерийского огня, бомбежкой войск противника. Первая мировая война ускорила развитие авиации: улучшилась конструкция самолетов, их тактико-технические показатели, скорость возросла до 130—220 км в час, потолок — до 4—7 км, время полета — до 2—7 ч. В зависимости от боевого применения авиация стала разделяться на истребительную, разведывательную, штурмовую, легкую и тяжелую бомбардировочную. В целях разведки на море, бомбардировки морских баз, надводных кораблей и подводных лодок противника, охраны своего флота и побережья применялись гидросамолеты. Стремление найти пути улучшения взаимодействия авиации с кораблями флота привело к созданию кораблей-авианосцев. В Англии к концу Первой мировой войны крейсер «Фьюриэс» переделали в авианосец с двумя взлетно-посадочными палубами. В июле 1918 г. 7 истребителей «Кэмел» поднялись с него и совершили
    успешный налет на базу германских цеппелинов. Так началась эпоха авианосной авиации.
    Усилилось и начало дифференцироваться по типам самолетов вооружение. Для поражения целей по курсу самолета истребители получили пулеметы, стрелявшие с помощью специальных приспособлений через пропеллер. Впервые такой способ установки пулемета применили в 1915 г. на французском самолете «Моран-Солнье». Подобными пулеметами оснащались и другие типы истребителей. Разведывательная и бомбардировочная авиация вооружалась оборонительными подвижными пулеметами. Возросла бомбовая нагрузка. Максимальной она была на российском «Илье Муромце» — 490 кг. Эффективность бомбардировщиков повысили приспособления для подвески бомб внутри самолета, механические и электрические бомбосбрасыватели, бомбардировочные прицелы.
    На фронтах воевали и германские дирижабли. Они обладали большой грузоподъемностью и дальностью полета, проникали в глубокий тыл противника, наносили бомбовые удары по Парижу и Лондону, другим целям на суше и на море. Но дирижабли легко поражались огнем артиллерии и пулеметов противовоздушной обороны и истребителей, не выдерживали конкуренции самолетов. Это привело к тому, что даже Германия за всю войну построила только 109 дирижаблей.

    Танки в начале 20-го века

    Первые проекты боевой техники, получившей впоследствии название танк (от англ. tank — цистерна, резервуар, бак) , разрабатывались в 1911—1915 гг. почти одновременно в Англии, Австро-Венгрии и России. Новый вид оружия принял бой 15 сентября 1916 г. в сражении на реке Сомме. Это были английские танки Мк-1, вооруженные двумя пушками и четырьмя пулеметами, в другом варианте — только шестью пулеметами. Далекие от совершенства, эти танки отличались громоздкими габаритами и неповоротливостью. Длина корпуса составляла 9,8 м, ширина — 4,1 м, высота — 2,5 м. Толщина брони была равна 6—10 мм и не защищала экипаж даже от бронебойных пуль. Запас хода не превышал 30 км, а скорость вне дорог — 2 км в час. Обзор был плохим, температура внутри машины повышалась до 70 °С, поэтому экипаж из 7 человек не мог долго оставаться в танке.
    Танковая техника быстро совершенствовалась, и на заключительном этапе боевых действий на Западном фронте Первой мировой воины приняли участие улучшенные модели танков Мк-1. В марте 1918 г. английская армия начала оснащаться средними пулеметными танками Мк-А, развивавшими скорость в 14 км в час, что дало основание назвать их «Уипет», т.е. борзая. Тогда же большим успехом французских танкостроителей явилось создание легкого танка «Рено» FT-17, который оказался самым массовым танком Первой мировой войны, использовался в армиях 20 государств, на его базе сконструировали первый советский танк, а во Франции он составлял основу танкового парка вплоть до середины 30-х гг. Этот дешевый в производстве, простой в управлении и надежный в эксплуатации 7-тонный танк с двумя членами экипажа имел броню в 16 мм, вооружался пушкой или пулеметом, отличался хорошей проходимостью и запасом хода в 35 км.
    Меньшую, чем танки, роль сыграли бронеавтомобили. Впервые они были сконструированы в Англии в 1900—1902 гг., а боевую проверку прошли на завершающем этапе англо-бурской войны. В Германии в 1902—1905 гг. появился пушечный бронеавтомобиль, ставший прототипом последующих моделей. Однако позиционный характер Первой мировой войны не способствовал массовому распространению бронеавтомобилей. В то же время в действиях по огневой поддержке конницы они были эффективны.

    Броненосцы и крейсеры в конце 19 - начале 20 века

    Во второй половине XIX в. парусные суда с паровым двигателем уступили место броненосцам: полностью металлическим, чисто паровым, с артиллерией главного калибра во вращающихся башнях. Первым боевым кораблем нового типа стал построенный северянами в период Гражданской войны в США броненосец «Монитор». Он имел водоизмещение 1200 т, был покрыт 100-миллиметровой поясной и 25-миллиметровой палубной броней. Два 280-миллиметровых орудия размещались во вращающейся башне с броней в 200 мм. В бою с кораблем южан «Мерримак», имевшим 10 пушек, «Монитор» устоял и этим доказал перспективность своей конструкции.
    Броненосцы мониторного типа, а они строились не только в США, но и в других странах, прежде всего в Англии, произвели переворот в кораблестроении, означали появление принципиально нового класса наиболее мощных военных кораблей. Но мониторы из-за своей низкобортности не были вполне мореходными кораблями, что ограничивало их боевое применение.
    Выход был найден в строительстве высокобортных кораблей, у которых бронирование ограничивалось так называемой цитаделью, защищавшей расположенные в центральной части артиллерию и механизмы, но оставлявшей без броневой защиты носовую и кормовую оконечности. Уровень техники и возможности промышленности позволили создать цитадельные броненосцы, у которых калибр орудий доходил до 452 мм («Дуильо», Италия, 1876 г.), а бортовая броня — до 600 мм («Инфлексибл», Англия, 1881 г.). Но дальше увеличивать количественные параметры средств корабельной защиты и нападения больше уже было нельзя, и научно-конструкторская мысль пошла по другому, более эффективному пути. Проблему повышения прочности брони решили путем улучшения ее качественных характеристик, а мощности артиллерийского огня — за счет усиления проникающей и разрушающей способности снарядов при тех же и даже меньших калибрах.
    С начала 80-х гг. для обшивки кораблей стали употреблять сталежелезную броню-компаунд, у которой наружная поверхность была твердой, а внутренняя — вязкой. Ее стойкость по сравнению с железной броней повысилась на 20—25%. В первой половине 90-х гг. применили никелевую цементированную сталь, что увеличило сопротивляемость брони на 30% против сталежелезной. К началу XX в. освоили односторонне закаленную хромоникеле-молибденовую сталь с твердым лицевым слоем и мягкой вязкой тыльной стороной, что придало ей еще 16% стойкости. По своим свойствам эта броня превосходила все применявшиеся ранее. Улучшение защитных свойств брони позволяло в каждой новой серии броненосцев уменьшать толщину бортового бронирования и за этот счет увеличивать общую площадь защищенного броней корабельного корпуса, доведя ее, например, у российского «Бородино» до 48% и у японского «Миказа» — до 69%.
    С 1867 г. началось переоснащение корабельной артиллерии казнозарядными нарезными орудиями, стрелявшими удлиненными снарядами. Прежние лафетные установки уступили место поворотным механическим орудийным станкам. Увеличение калибра пушек повлекло сокращение их числа. К концу XIX в. установился тип эскадренного броненосца с четырьмя, обычно 305-миллиметровыми, орудиями в двух защищенных мощной броней башнях, а также орудиями меньших калибров. Повысилась эффективность артиллерийского огня в связи с рядом технических усовершенствований, в том числе внедрением электроавтоматической централизованной системы управления огнем, принятием на вооружение новых бронебойных снарядов с наконечниками из вязкой стали.
    С 60-х гг. XIX в. начинается развитие еще одного класса кораблей — крейсеров. Имея по сравнению с броненосцами меньшее водоизмещение, слабое бронирование, артиллерию среднего и малого калибров, но большую скорость, они предназначались для действий в составе эскадры, разведки, нарушения коммуникаций противника и защиты своих. В зависимости от функций корабли этого типа отличались различными техническими характеристиками и подразделялись на малые и средние бронепалубные и более сильные по вооружению и лучше защищенные броненосные крейсеры.

    Торпедное оружие и миноносцы

    Огромное значение для усиления ударной мощи флота имело изобретение самодвижущейся мины — торпеды. Высокая эффективность торпедного оружия вызвала к жизни новый класс кораблей — миноносцев. Поначалу они были небольшими, на 20—30 т водоизмещения, с одной-двумя торпедами, но уже ко времени русско-японской войны стабилизировался тип мореходных 350-тонных миноносцев с двумя двухтрубными или тремя однотрубными торпедными аппаратами на верхней палубе, одной 75-миллиметровой и пятью 47-миллиметровыми пушками,
    скоростью хода до 29 узлов. В грозное оружие превратилась и сама торпеда. Ее боевой заряд достигал 150 кг, максимальная дальность хода возросла до 7 км и скорость — до 45 узлов. Необходимость решения ряда боевых задач в составе эскадры побудила к дальнейшему развитию класса миноносцев и созданию эскадренных миноносцев, или эсминцев — кораблей с возросшими вооружением, скоростью и дальностью плавания. В составе военно-морских сил прочно закрепились и торпедные катера. Они активно проявили себя и не потеряли значения до наших дней.

    Русско-японская война и переоснащение морского флота

    Морские сражения русско-японской войны дали возможность проверить тактико-технические концепции, заложенные в кораблях различных классов. Морские державы срочно вносили коррективы в проекты строившихся кораблей, пытаясь устранить просчеты и недостатки,
    выявившиеся в ходе войны и особенно Цусимского сражения. Первой успеха добилась Англия. В октябре 1905 г. был заложен и ровно через год закончил ходовые испытания линкор (так были переклассифицированы бывшие эскадренные броненосцы) «Дредноут». Это название стало нарицательным, обозначавшим новый подкласс линейных кораблей, по всем показателям превосходивших броненосцы додредноутного типа.
    Артиллерия главного калибра линкора «Дредноут» располагалась в пяти двухорудийных башнях, в бортовом залпе могли участвовать одновременно четыре башни. Каждый отсек корпуса разделялся водонепроницаемыми переборками без дверей, сообщение между отсеками осуществлялось через верхнюю палубу с помощью шахт: этим достигалась большая непотопляемость; корабль имел полностью бронированный борт. Впервые были установлены четыре паровые турбины.
    С появлением «Дредноута» все ранее построенные эскадренные броненосцы сразу оказались устаревшими, и в мире началось усиленное строительство линкоров нового типа. К концу Первой мировой войны развитие кораблей этого класса привело к созданию линкоров еще более мощных, чем «Дредноут». Они имели 8—12 орудий 305—406-миллиметрового калибра, 102— 152-миллиметровую противоминную артиллерию, усиленное до 356 мм бронирование, повышенную до 25—28 узлов скорость.
    Произошли серьезные изменения и в развитии крейсеров. Опыт Цусимы показал, что броненосные крейсеры могут быть втянуты в бой с линейными кораблями. Но чтобы успешно противостоять им, нужны были орудия такого же калибра, хотя и меньшим числом, почти одинаковое бронирование, но значительно большая скорость. Эти новые требования были реализованы в классе линейных крейсеров. Впервые они появились в Англии в 1907 г., а последний представитель этого класса кораблей английский линейный крейсер «Худ» был построен в 1918 г. Он имел восемь 381-миллиметровых орудий, 305-миллиметровую броню в наиболее утолщенной части, скорость хода около 32 узлов. В дальнейшем эволюция линейных крейсеров прекратилась, и они слились с линкорами в один общий класс.

    Подводные лодки в конце 19 - начале 20-го века

    Попытки строить подводные суда военного назначения предпринимались и в XVIII, и на протяжении всего XIX в. В 1864 г. принадлежавшая Конфедерации рабовладельческих штатов железная лодка, погружавшаяся в воду и оставлявшая на поверхности только плоскую палубу, потопила шестовой миной деревянный корабль северян. В этом же году во Франции построили крупную (450 т) железную подводную лодку с пневматическим двигателем на сжатом воздухе и торпедным аппаратом. Практического боевого значения она не имела.
    В дальнейшем пытались ставить на подводные лодки паровую машину, электродвигатель, газолиновый1 мотор, комбинировать их в разном сочетании для обеспечения надводного и подводного хода. В России строительство подводных лодок началось в 1902 г. Первые английские лодки вошли в строй в 1904 г., но конструкция оказалась неудачной и шесть из них затонули. Германия приступила к сооружению подводных лодок только с 1906 г.
    Переломным в истории подводного кораблестроения стал 1908 год, когда в России была создана «Минога» — первая подводная лодка с дизельным двигателем для надводного хода. Более высокая мощность и экономичность дизелей позволили перейти к строительству лодок с большей мореходностью и автономностью, сильным торпедным вооружением и палубной артиллерией на случай боя в надводном плавании. В ходе Первой мировой войны окончательно определились их типы в связи с решавшимися задачами: для действий в прибрежных водах, открытом море, на дальних океанских коммуникациях предназначались соответственно малые, средние и большие (крейсерские) подводные лодки. Их водоизмещение колебалось от 200 до 2500 т, дальность плавания наиболее крупных достигала 4— 5 тыс. км. Широко применялись подводные лодки — минные заградители.
    Подводные лодки продемонстрировали высокую эффективность в ходе боевых действий. Одна из них, немецкая, 22 сентября 1914 г. потопила три английских броненосных крейсера. Другая 7 мая 1915 г. торпедировала английский трансатлантический лайнер «Лузитания», шедший из США в Англию. За время Первой мировой войны потери в боевых кораблях от торпед подводных лодок и от поставленных ими мин на всех театрах военных действий и во всех флотах составили 105 кораблей, в том числе 12 линкоров и 23 крейсера. Они стали главным средством боевых действий на морских коммуникациях. В 1914—1918 гг. только Германия с помощью подводных сил потопила неприятельских коммерческих судов и кораблей нейтральных стран общим водоизмещением свыше 18,7 млн т.
    Поиски контрмер привели к появлению средств противолодочной обороны. С 1915 г. начинают использовать суда-ловушки: обыкновенные пароходы, вооруженные тщательно замаскированными орудиями. В борьбе с подводными лодками применялись эсминцы и патрульные суда, сначала приспособленные, а затем и специально созданные охотники за подводными лодками — небольшие корабли водоизмещением 60— 80 т, имевшие одну-две пушки, глубинные бомбы и акустические приборы для обнаружения движущейся цели за 15— 20 миль.

    Итог.
    В XIX - начале XX в. резко возросла роль науки в преобразовании техники и технологии производства. Многие отрасли целиком формировались на базе научных открытий и выдающихся изобретений. В свою очередь прогресс технических средств, нашедший выражение в освоении технологии массового производства, развитии электротехники, электрификации производства и транспорта, внедрении новых видов связи, изобретении двигателя внутреннего сгорания, автомобиле- и авиастроении, принципиальном обновлении многих других отраслей промышленности и развитии новых типов вооружения, явился основой для формирования индустриальной цивилизации. На протяжении последней трети XVIII — середины XIX в. она прошла стадии становления и быстрого распространения. Затем индустриальное общество вступило в фазу стабильного развития, которое продолжалось до Первой мировой войны. Другими словами, индустриальная цивилизация охватывает эпоху расцвета капитализма. С окончанием Первой мировой войны начался закат индустриальной цивилизации. В последней четверти XX в. обозначилось начало переходного периода в процессе ее трансформации в постиндустриальную цивилизацию.

    Естественные науки в конце XIX начале XX в. вступили в качественно новый этап своего развития, ибо во всех областях знания были сделаны открытия, способствовавшие колоссальному научному и техническому прогрессу. Происшедшая в XX веке революция в области физики неизбежно вызвала интеграцию науки и техники при ведущей роли естествознания. Хотя основные сравнительно новые продукты техники, даже автомобиль и самолет, а также методы их строительства, в частности метод массового производства, вначале все еще базируются на науке скорее XIX, чем XX столетия. С течением времени интеграция науки и техники происходит все быстрее и быстрее, или, вернее, она обходит весь круг промышленных процессов по мере того, как технические приемы, основанные на новых физических знаниях - сначала в области электроники, а позднее ядерной физики, - проникают в старые отрасли промышленности и создают новые, такие, как производство телевизионного оборудования и атомной энергии. Именно в XX веке «отношения между наукой и техникой быстро меняются местами» (Дж. Бернал), так как техника все больше развивается на основе научных исследований.

    Машиной, которой больше чем какой-либо иной суждено было преобразовать как промышленность, так и условия жизни в XX веке, явился двигатель внутреннего сгорания. Он, хотя и более косвенно, чем первоначальная паровая машина, явился плодом применения науки, в данном случае термодинамики. Основная идея взрыва предварительно сжатой смеси воздуха и горючего газа для осуществления термодинамического эффекта принадлежала французскому инженеру де Роша (1815 -1891), который выдвинул ее еще в 1862 году, однако от идеи до работоспособной машины был еще далекий путь и необходимо было разработать еще много существенных деталей методы зажигания, функционирования клапанов, - которые не требовались в паровых машинах.

    Пионеры-практики Ленуар (1822-1900) и Отто (1832-1891), изобретшие все еще почти универсальный четырехтактный цикл, и Дизель (1858 1913), дополнивший его компрессорным зажиганием, сумели создать мощные двигатели, однако применение их ограничивалось на протяжении XIX века сравнительно небольшим числом стационарных газовых и нефтяных двигателей. Эти двигатели и автомобили производились главным образом как предмет роскоши или для спортивных целей.

    Генри Форд (1863-1947) начал как конструктор-любитель в мастерской на заднем дворе и быстро превратился в самого преуспевающего фабриканта нового автомобиля, потому что он понимал, что то, что было действительно нужно, это дешевый автомобиль в огромных количествах. Осуществление этой идеи потребовало в некоторой степени массовости производства и в то же самое время дало мощный толчок его дальнейшему развитию. Начиная с этого момента все классические методы машиностроения должны были подвергнуться перестройке с тем, чтобы оно было способно производить идентичные детали в большом количестве.

    Летать как птица было извечной мечтой человечества, как об этом свидетельствуют широко распространенные легенды о летающих людях или летающих машинах, а также издревле делавшиеся во всех странах мира попытки подражать птицам. Проблемы полета столь сложны, что не могли быть разрешены наукой прошлого века; в осуществлении длительного полета все зависело от наличия достаточно легкого двигателя, а такой источник энергии мог быть получен только в XX веке в результате усовершенствования двигателя внутреннего сгорания. Братья Райт, механики-велосипедисты по профессии и аэронавты по призванию, смонтировали ими самими сделанный двигатель на самолет и работали над его усовершенствованием до тех пор, пока он в первый раз не полетел в 1903 году. Труден только первый шаг. Стоило Орвилю Райту поднять свой аэроплан в воздух и заставить его пролететь несколько футов, как будущее авиации было обеспечено.

    В основном именно в связи со своим эмпирическим происхождением аэроплан должен был в первые десятилетия своего существования больше давать науке, замечает Дж. Бернал, чем извлекать из нее. Это обстоятельство послужило причиной для начала серьезного изучения аэродинамики, что должно было получить широкий отклик в машиностроении и даже в метеорологии и астрофизике. Усилия, относящиеся к более раннему периоду, такие, как работа Магнуса (1802 1870), сосредоточивались на полете снарядов. Изучение обтекаемого движения и турбулентности, предпринятое в связи с работой над первыми аэропланами, нашло себе непосредственное применение в конструкции судов и во всех проблемах, связанных с воздушным течением, начиная с доменных печей и кончая вентиляцией жилищ. Результаты исследований в области аэродинамики затем нашли свое эффективное применение в авиации XX века и, прежде всего в военной авиации.

    Эволюция аэроплана с пропеллерным двигателем шла по прямой линии от биплана Райтов до летающей «сверхкрепости»; однако требование все больших скоростей для военных целей пробило, наконец, типичный консерватизм конструкторов и породило газовую турбину, обусловившую возможность создания реактивного самолета. Во второй мировой войне самолет этот появился слишком поздно, чтобы иметь какую-либо ценность в военном отношении. Из тех же потребностей войны возник и самый старый из снарядов с огневым двигателем - ракета. К настоящему времени различие между самолетом и ракетой постепенно стирается и, по-видимому, исчезнет совсем, как только удастся заставить атомную энергию служить в качестве движущей силы. Реактивный самолет и ракета эксплуатируются только в верхних слоях атмосферы; при этом ракета выгодна как транспортное средство только для межконтинентальных путешествий.

    Немалую роль в развитии техники XX столетия сыграло изобретение радио и телевидения, причем здесь следует иметь в виду следующие обстоятельства. Если мы раскроем энциклопедическую книгу «Изобретения, которые изменили мир» (о ней уже шла речь выше) или хронологический обзор «История естествознания в датах» словацких ученых Я. Фолгы и Л. Новы, то обнаружим, что изобретение радио приписывается итальянскому физику Г. Маркони и ни слова не упоминается о нашем соотечественнике А. Попове. Перед нами типичный западоцентризм, когда сознательно умалчивается о достижениях российских ученых и техников. В данной лекции мы не будем подробно описывать значимость радио, несколько подробнее рассмотрим вопрос об изобретении телевидения.

    Развитие идей телевидения с самого своего рождения носило интернациональный характер. Как отмечает в своей статье «Творцы голубого экрана» В. Урвалов, в период с 1878 г. до конца XIX века в одиннадцати странах в патентные бюро и редакции журналов было представлено более 25 проектов прообраза телевизионных устройств, из них пять - в России. В 1880 г. наш соотечественник П.И. Бахметьев, будучи студентом Цюрихского университета, разработал проект устройства под названием «телефотограф», одного из первых предшественников телевизора. Цветную телевизионную систему с последовательной передачей сигналов трех цветов в конце 1899г. патентует инженер-технолог из Казани А.А. Полу мордвинов, вскоре переехавший в Петербург и занявший место помощника столоначальника в телеграфном департаменте. Он впервые вводит в научный оборот понятие «триада цветов», практическое значение которого сохранилось и в наше время. Несколько обзоров по электровидению в те годы сделал военный инженер К.Д. Перский. Именно он впервые ввел в оборот термин «телевидение» в обзорном докладе, прочитанном им на Международном конгрессе в Париже (1900г.). Двухцветную телевизионную систему с одновременной передачей белого и красного цветов предложил в 1907г. сын бакинского купца И.А. Адамян, работавший в собственной лаборатории под Берлином.

    К началу XX в. сложились предпосылки для зарождения катодного, или - по современной терминологии - электронного телевидения. Еще в 1858г. боннский профессор Ю. Плюккер открыл катодные лучи, в 1871 г. англичанин У. Крукс изготовил специальные трубки ^ля исследования свечения различных веществ, облучаемых катодным пучком в вакууме, а в 1897 г. немецкий профессор К.Ф. Браун применил катодную трубку для наблюдения быстропротекающих электрических процессов. В 1907 г. преподаватель петербургского Технологического института Б.Л. Розинг запрашивает патенты в России, Англии и Германии на изобретенный им «Способ электрической передачи изображений», отличающийся применением катодной трубки для воспроизведения изображения в приемном устройстве. Он впервые вводит модуляцию плотности катодного пучка и равноскоростную развертку по двум координатам для образования прямоугольного растра.

    Передающее устройство у Розинга остается оптико-механическим, но в нем применен безынерционный калиевый фотоэлемент с внешним фотоэффектом.

    Через год английский инженер А.А. Кемпбелл-Суинтон выдвигает идею, а в 1911 г. предлагает грубую схему полностью электронного телевизионного устройства, включая передающую трубку. Однако его попытки практически доказать работоспособность предложенной схемы успеха не принесли. Более успешно шла работа у россиянина Розинга, который смог завершить постройку лабораторного образца своей аппаратуры смешанного типа. В своей записной книжке Б.Л. Розинг оставил такую запись: «9 мая 1911 г. в первый раз было видно отчетливое изображение, состоящее из четырех светлых полос». Это было первое в мире телевизионное изображение, переданное и в тот же миг принятое с помощью аппаратуры, разработанной и изготовленной в России. В последующие дни Б.Л. Розинг демонстрировал передачу простых геометрических фигур и движение кисти руки. Отмечая заслуги Б.Л. Розинга в развитии идей телевидения, Русское техническое общество в 1912г. присудило ему Золотую медаль. И затем началось бурное развитие телевидения в Германии, Англии, США и Советском Союзе.

    Ученые Советского Союза внесли существенный вклад и в создание лазеров («усилителей света в результате вынужденного излучения», аббревиатура этих слов на английском языке и дает слово лазер). Лазеры получили широкое применение в техника (в обработке металлов, в частности в их сварке, резке, сверлении), в медицине (в хирургии, офтальмологии), в различных научных исследованиях. Перечисленное применение лазеров является, несомненно, только началом. Известные советские ученые Н.Г. Басов и А.М. Прохоров являются одними из основоположников теории и создания квантовых генераторов.

    «Создание квантовых генераторов стало началом развития нового направления электроники, отмечает В.А. Кириллин, квантовой электроники науки, которая занимается теорией и техникой различных устройств, действие которых основано на вынужденном излучении и на нелинейном взаимодействии излучения с веществом». К числу таких устройств, кроме квантовых генераторов (в том числе лазеров), относятся усилители и преобразователи частоты электромагнитного излучения, а также квантовые усилители СВЧ (сверхвысокой частоты), квантовые магнитометры и стандарты частоты, лазерные гироскопы (лазерные приборы, свойство которых - неизменное сохранение оси вращения в пространстве позволяет использовать их для управления самолетами, ракетами, морскими судами и т.д.) и некоторые другие.

    Электронные приборы и устройства нашли широкое применение, стали незаменимыми в аппаратуре связи, автоматике, измерительной технике, электронных вычислительных машинах и во многих других очень важных областях. Радиоэлектроника, широко вошедшая в производство, науку, быт людей, является одним из самых главных направлений технического прогресса, мощным средством повышения производительности труда. Детищем радиоэлектроники являются и электронно-вычислительные машины (ЭВМ), чье развитие привело к компьютерной революции.

    Именно ЭВМ (компьютеры) дают возможность хранения, быстрого поиска и передачи информации, что означает революцию в системах накопления и доступа к освоенным знаниям. Наступает очень важный в жизни человечества этап «безбумажной информатики»: информация поступает к специалистам прямо на рабочее место на соответствующие устройства отображения (дисплеи), расположенные в удобных и легкодоступных для потребителя местах. Не менее, а, может быть, даже более важное значение приобретает все более широкое внедрение такого рода средств и в быт, что и наблюдается сейчас.

    Более того, информационная инфраструктура, основанная на слиянии ЭВМ, систем связи (в том числе космической) и баз знаний, становится важнейшим фактором в дальнейшем развитии электронной и вычислительной техники и информационных технологий.

    Технический прогресс 20 века и новый этап индустриального развития. Технический прогресс это процесс, который неразрывно связан с использованием и внедрением научно- технических разработок в жизнь человечества. Еще в начале 20 века огромным толчком к началу технического прогресса стало распространение качественно новых транспортных средств, это стало стимулом для развития торговли и военного дела.

    Развитие транспорта

    К началу 1908 года в мире насчитывалась более 200 компаний, которые специализировались на производстве легковых автомобилей. В этот же период в США был впервые выпущен трактор такое новшество в несколько раз облегчало процесс обработки земли и значительно повышало объемы изготавливаемой продукции.

    В 1909 году на предприятии крупного промышленника Г. Форда была запущена серия автомобилей массового потребления. Именно автомобиль стал предметом, символизирующим 20 век.

    Наряду с популяризацией автомобильного транспорта, значительно утратила свою популярность железная дорога предшественник начала мирового индустриального развития.

    Но все же новаторства коснулись и сферы железнодорожного транспорта: в 1912 году был впервые создан дизельный локомотив, который в отличие от же существующих ранее моделей осуществлял движение за счет электроэнергии.

    В начале века произошла настоящая революция в судоходном деле: на смену неэффективным парусникам пришли новые суда с паровыми турбинами. Благодаря двигателю внутреннего сгорания, такие корабли могли за две недели преодолеть Атлантический океан.

    Новым транспортным средством в 20 веке стала авиация, ранее имевшая исключительно развлекательное назначение. Самолеты с бензиновым двигателем исполняли функции пассажирских перевозок и военных стратегических объектов.

    Так уже в 1914 году был успешно прошел испытание первый в мире бомбардировщик «Илья Муромец» - самолет, который имел возможность перевозить коло тонны боевых припасов и подниматься на высоту 4 км. Огромным стимулом для развития авиации стала Первая Мировая война. К концу 30-х годов авиалинии связывали практически все уголки земного шара.

    Новые материалы

    Совершенствование транспорта требовало новых конструктивных материалов. Еще в конце 19 века английский изобретатель С.Дж. Томас придумал новый способ переплавки чугуна в сталь, без добавления серы и фосфора, что делало металл более прочным.

    Такое нововведение начало широко применяться в авиа - и машиностроении. Однако, уже в 20 х годах, сталь потеряла свою актуальность, для создания легковых автомобилей требовался более легкий, но не менее прочный металл. Сталь в легковом машиностроении начал вытеснять усовершенствованный алюминий.

    С развитием химической промышленность, мир увидели такие искусственно созданные материалы как перлон, нейлон, капрон и синтетические смолы. Массовое производство и народное употребление этих материалов увеличилось только после окончания Второй Мировой войны.

    В начале 20 века был впервые изобретен железобетон человечество начало возводить невиданные до тех пор сооружения небоскребы. Первым небоскребом стал Вулворт в Нью-Йорке высота здания достигала 242м.

    Развитие индустрии

    В начале 20 века в мировой промышленности появляются первые гиганты индустрии предприятия монополисты, которым зачастую принадлежали разработки и новшества, которые внедрялись в определенном векторе производства. На таких предприятиях было задействовано около 15 тыс.служащих.

    Очень часто крупные предприниматели объединяли свои концерны и банковские капиталы, что послужило причиной возникновения первых акционерных обществ. Состоянием на 1914 года в мире существовало пять крупнейших акционерных предприятий, большинство из которых принадлежало американцам.

    Индустриальные гиганты выбирали своеобразный путь повышения объемов производства зачастую они продлевали рабочий день наемных служащих и снижали им заработную плату.

    Такая модель развития дала трещину уже в начале 30-х годов. В дальнейшем рентабельность предприятий повышалась за счет анализа рынка спроса, а также внедрение НТП в производство.

    Нужна помощь в учебе?

    Предыдущая тема: Истоки ускорения развития науки: революция в естествознании XX века
    Следующая тема:   Страны Западной Европы, Россия и Япония: опыт модернизации и развития