» »

Разломы земной коры. Тектонический сдвиг: опасные последствия

30.09.2019
  • Авторские разделы
  • Открываем историю
  • Экстремальный мир
  • Инфо-справка
  • Файловый архив
  • Дискуссии
  • Услуги
  • Инфофронт
  • Информация НФ ОКО
  • Экспорт RSS
  • Полезные ссылки




  • Важные темы

    В научной литературе, в публикациях в сети интернет, в блогах и форумах все чаще поднимается и обсуждается тема тектонических разломов. Правда, в записях они, чаще всего, фигурируют под названием геопатогенных зон, видимо потому, что это словосочетание чаще находится на слуху и имеет выраженный мистический оттенок. Между тем, большинству читателей почти ничего не известно о таком явлении, как тектонический разлом, т.к. корни его лежат не в мистике и эзотерике, а в общепризнанной, но не самой популярной на сегодняшний день науке - геологии.

    Тектонический разлом - это зона нарушения сплошности земной коры, деформационный шов, разделяющий породный массив на два блока. Тектонические разломы присутствуют в любом горном массиве на любой территории и давно изучаются геологами. Именно к тектоническим разломам, чаще всего, приурочены месторождения полезных ископаемых - металлических руд, углеводородов, подземных вод и др., что делает их весьма полезным объектом для исследований.

    До недавнего времени в геологии считалось, что земная кора, за исключением районов активного вулканизма и проявления сейсмических явлений (опасных в плане землетрясений), находится в состоянии покоя, т.е. неподвижна. Однако, на современном этапе с вводом в эксплуатацию новой измерительной техники стало очевидным, что земная кора постоянно находится в движении. Грубо говоря, земля ходит прямо у нас под ногами. Эти движения обладают незначительной амплитудой и не заметны глазу, однако, могут оказывать существенное воздействие, как на массивы горных пород, так и на инженерные сооружения.

    Почему земная кора подвижна? В соответствие с первым законом Ньютона, движение происходит при условии воздействия силы. В земной коре постоянно действуют силы (одна из них - сила тяжести), вследствие чего геологическая среда всегда находится в напряженном состоянии. Поскольку горные породы всегда перенапряжены, они начинают деформироваться и разрушаться. Чаще всего это выражается в формировании тектонических швов (разрывов) или смещения блоков горных пород вдоль заложенных ранее активных разломов.

    Современные смещения по активным разломам могут приводить к деформации земной поверхности и оказывать механическое воздействие на инженерные объекты. Известны случаи, когда в зонах активных разломов происходило разрушение зданий и сооружений, постоянные разрывы водонесущих коммуникаций, образование трещин в стенах и фундаментах. Подобные аварийные здания и сооружения есть практически в каждом городе. Но случаи деформации зданий, чаще всего, не придаются широкой огласке.

    Достаточно часто обсуждается тема негативного воздействия тектонических разломов (геопатогенных зон) на здоровье человека. На сегодняшний день известен ряд научных исследований на данную тему. Как правило, авторы отмечают, что тектонические разломы действительно оказывают воздействие на живые организмы, причем, это воздействие может быть неоднозначным для различных видов растений и животных. В основном, в кругу исследователей сложилось мнение, что воздействие тектонических разломов на человека носит преимущественно негативный характер. Некоторые люди достаточно остро реагируют на тектонические зоны, в пределах которых их самочувствие резко ухудшается. Большинство людей переносят пребывание в разломных зонах достаточно спокойно, но отмечается некоторые ухудшения показателей их состояния. Небольшой процент людей практически не подвержен воздействию тектонических зон.

    Объяснить принципы негативного воздействия зон тектонических нарушений на здоровье человека достаточно сложно. Процессы, протекающие в зонах тектонических нарушений сложны и разнообразны. Активный разлом - это зона концентрации тектонических напряжений и зона повышенных деформаций породного массива. Многие геологи и геомеханики считают, что перенапряженная зона разлома порождает электромагнитное поле. Точно также как, например, механическое воздействие на кристалл кварца в пьезоэлектрической зажигалке порождает разряд тока. Помимо этого, вследствие повышенной трещиноватости тектонический разлом, в большинстве случае, представляет собой водоносную зону. Совершенно очевидно, что движение подземных вод с растворенными в них солями (проводника) через толщу пород (которые отличаются по своим электрическим свойствам) может формировать и формирует электрические поля и аномалии. Именно поэтому в зонах тектонических разломов зачастую наблюдаются аномалии различных природных физических полей. Эти аномалии широко используются для поиска и выявления зон тектонических нарушений в современной геофизике. Вероятнее всего, указанные аномалии служат и основным источником воздействия на живые организмы, в т.ч. на человека.

    На сегодняшний день проблема изучения влияния тектонических разломов на инженерные объекты и на здоровье человека изучается только по инициативе независимых исследователей. Никаких целенаправленных официальных программ в этом направлении не существует. Наличие активных тектонических нарушений никак не учитывается при выборе участков под строительство жилых зданий. Вопросами поиска и выявления зон смещений земной поверхности занимаются только в очень редких случаях при строительстве объектов повышенного уровня ответственности. В целом, очевидно, что в среде геологов, проектировщиков и строителей назрела необходимость целенаправленного изучения аномальных тектонических зон и обязательного учета геодинамической активности геологической среды в процессе ее освоения.

    Геологический разлом , или разрыв — нарушение сплошности горных пород , без смещения (трещина) или со смещением пород по поверхности разрыва. Разломы доказывают относительное движение земных масс. Крупные разломы земной коры являются результатом сдвига тектонических плит на их стыках. В зонах активных разломов часто происходят землетрясения как результат выброса энергии во время быстрого скольжения вдоль линии разлома. Так как чаще всего разломы состоят не из единственной трещины или разрыва, а из структурной зоны однотипных тектонических деформаций, которые ассоциируются с плоскостью разлома, то такие зоны называют зонами разлома .

    Две стороны невертикального разлома называют висячий бок и подошва (или лежачий бок ) — по определению, первое происходит выше, а второе ниже линии разлома. Эта терминология пришла из горной промышленности.

    Типы разломов

    Геологические разломы делятся на три основные группы в зависимости от направления движения. Разлом, в котором основное направление движения происходит в вертикальной плоскости, называется разломом со смещением по падению ; если в горизонтальной плоскости — то сдвигом . Если смещение происходит в обеих плоскостях, то такое смещение называется сбросо-сдвигом . В любом случае, наименование применяется направлению движения разлома, а не к современной ориентации, которая могла быть изменена под действием местных либо региональных складок либо наклонов.

    Разлом Сан-Андреас Калифорния, США

    Разлом в метаморфическом слое возле Аделаиды, Австралия

    Разлом со смещением по падению

    Разломы со смещением по падению делятся на сбросы , взбросы и надвиги . Сбросы происходят при растяжении земной коры, когда один блок земной коры (висячий бок) опускается относительно другого (подошвы). Участок земной коры, опущенный относительно окружающих участков сброса и находящийся между ними, называется грабеном . Если участок наоборот приподнят, то такой участок называют горстом . Сбросы регионального значения с небольшим углом называют срывом , либо отслаиванием . Взбросы происходят в обратном направлении — в них висячий бок движется наверх относительно подошвы, при этом угол наклона трещины превышает 45°. При взбросах земная кора сжимается. Ещё один вид разлома со смещением по падению — это надвиг , в нём движение происходит аналогично взбросу, но угол наклона трещины не превышает 45°. Надвиги обычно формируют скаты, рифты и складки . В результате образуются тектонические покровы и клиппы . Плоскостью разлома называется плоскость, вдоль которой происходит разрыв.

    Сдвиги

    Во время сдвига поверхность разлома расположена вертикально и подошва двигается влево либо вправо. В левосторонних сдвигах подошва движется в левую сторону, в правосторонних — в правую. Отдельным видом сдвига является трансформный разлом , который проходит перпендикулярно срединно-океаническим хребтам и разбивает их на сегменты шириной в среднем 400 км.

    Горные породы разломов

    Все разломы имеют измеримую толщину, которую вычисляют по величине деформированных пород, по которым определяют слой земной коры, где произошёл разрыв, типу горных пород, подвергшихся деформации и присутствию в природе жидкостей минерализации. Разлом, проходящий через различные слои литосферы, будет иметь различные типы горных пород на линии разлома. Длительное смещение по падению приводит к накладыванию друг на друга пород с характеристиками разных уровней земной коры. Это особенно заметно в случаях срывов или крупных надвигов.

    Основными типами горных пород при разломах являются следующие:

    • Катаклазит — порода, текстура которой обусловлена бесструктурным тонкозернистым веществом породы.
    • Милонит — сланцевая метаморфическая горная порода, образовавшаяся при движении масс горных пород по поверхностям тектонических разрывов, при раздроблении, перетирании и сдавливании минералов исходных пород.
    • Тектоническая брекчия — горная порода, состоящая из остроугольных, неокатанных обломков пород и соединяющего их цемента. Образуется в результате дробления и механического истирания горных пород в зонах разломов.
    • Сбросовая грязь — несвязанная, богатая глиной мягкая порода, в добавление к ультрамелкозернистому катализиту, который может иметь плоский структурный рисунок и содержать < 30 % видимых фрагментов.
    • Псевдотахилит — ультрамелкозернистая, стекловидная порода, обычно чёрного цвета.

    Индикация глубинных разломов

    Расположение глубинных разломов можно определять на поверхности Земли при помощи гелиевой съёмки. Гелий, как продукт распада радиоактивных элементов, насыщающих верхний слой земной коры, просачивается по трещинам, поднимается в атмосферу, а затем в космическое пространство. Такие трещины и особенно места их пересечения, обладают высокими концентрациями гелия. Это явление было впервые установлено российским геофизиком И. Н. Яницким во время поисков урановых руд, признано как научное открытие и занесено в Государственный реестр открытий СССР под № 68 с приоритетом от 1968 г. в следующей формулировке: "Экспериментально установлена неизвестная ранее закономерность, заключающаяся в том, что распределение аномальных (повышенных) концентраций свободного подвижного гелия зависит от глубинных, в том числе рудоносных, разломов земной коры".

    Тектоника плит

    Материал из Википедии — свободной энциклопедии

    Карта литосферных плит

    Текто́ника плит — современная геологическая теория о движении литосферы. Она утверждает, что земная кора состоит из относительно целостных блоков — плит, которые находятся в постоянном движении друг относительно друга. При этом в зонах расширения (срединно-океанических хребтах и континентальных рифтах) в результате спрединга (англ. seafloor spreading — растекание морского дна) образуется новая океаническая кора, а старая поглощается в зонах субдукции. Теория объясняет землетрясения, вулканическую деятельность и горообразование, большая часть которых приурочена к границам плит.

    Впервые идея о движении блоков коры была высказана в теории дрейфа континентов, предложенной Альфредом Вегенером в 1920-х годах. Эта теория была первоначально отвергнута. Возрождение идеи о движениях в твёрдой оболочке Земли («мобилизм») произошло в 1960-х годах, когда в результате исследований рельефа и геологии океанического дна были получены данные, свидетельствующие о процессах расширения (спрединга) океанической коры и пододвигания одних частей коры под другие (субдукции). Объединение этих представлений со старой теорией дрейфа материков породило современную теорию тектоники плит, которая вскоре стала общепринятой концепцией в науках о Земле.

    В теории тектоники плит ключевое положение занимает понятие геодинамической обстановки — характерной геологической структуры с определённым соотношением плит. В одной и той же геодинамической обстановке происходят однотипные тектонические, магматические, сейсмические и геохимические процессы.

    История теории

    Подробнее по этой теме см.: История теории тектоники плит .

    Основой теоретической геологии начала XX века была контракционная гипотеза. Земля остывает подобно испечённому яблоку, и на ней появляются морщины в виде горных хребтов. Развивала эти идеи теория геосинклиналей, созданная на основании изучения складчатых сооружений. Эта теория была сформулирована Джеймсом Даной , который добавил к контракционной гипотезе принцип изостазии. Согласно этой концепции Земля состоит из гранитов (континенты) и базальтов (океаны). При сжатии Земли в океанах-впадинах возникают тангенциальные силы, которые давят на континенты. Последние вздымаются в горные хребты, а затем разрушаются. Материал, который получается в результате разрушения, откладывается во впадинах.

    Против этой схемы выступил немецкий учёный-метеоролог Альфред Вегенер . 6 января 1912 года он выступил на собрании Немецкого геологического общества с докладом о дрейфе материков. Исходной посылкой к созданию теории стало совпадение очертаний западного побережья Африки и восточного Южной Америки. Если эти континенты сдвинуть, то они совпадают, как если бы образовались в результате раскола одного праматерика.

    Вегенер не удовлетворился совпадением очертаний побережий (которые неоднократно замечались до него), а стал интенсивно искать доказательства теории. Для этого он изучил геологию побережий обоих континентов и нашёл множество схожих геологических комплексов, которые совпадали при совмещении, так же, как и береговая линия. Другим направлением доказательства теории стали палеоклиматические реконструкции, палеонтологические и биогеографические аргументы. Многие животные и растения имеют ограниченные ареалы, по обе стороны Атлантического океана. Они очень схожи, но разделены многокилометровым водным пространством, и трудно предположить, что они пересекли океан.

    Кроме того, Вегенер стал искать геофизические и геодезические доказательства. Однако в то время уровень этих наук был явно не достаточен, чтобы зафиксировать современное движение континентов. В 1930 году Вегенер погиб во время экспедиции в Гренландии, но перед смертью уже знал, что научное сообщество не приняло его теорию.

    Изначально теория дрейфа материков было принята научным сообществом благосклонно, но в 1922 году она подверглась жёсткой критике со стороны сразу нескольких известных специалистов. Главным аргументом против теории стал вопрос о силе , которая двигает плиты. Вегенер полагал, что континенты двигаются по базальтам океанического дна, но для этого требовалось огромное усилие, и источника этой силы никто назвать не мог. В качестве источника движения плит предлагались сила Кориолиса, приливные явления и некоторые другие, однако простейшие расчёты показывали, что всех их абсолютно недостаточно для перемещения огромных континентальных блоков.

    Критики теории Вегенера поставили во главу угла вопрос о силе, двигающей континенты, и проигнорировали всё множество фактов, безусловно подтверждавших теорию. По сути, они нашли единственный вопрос, в котором новая концепция была бессильна, и без конструктивной критики отвергли основные доказательства. После смерти Альфреда Вегенера теория дрейфа материков была отвергнута, получив статус маргинальной науки, и подавляющее большинство исследований продолжали проводиться в рамках теории геосинклиналей. Правда, и ей пришлось искать объяснения истории расселения животных на континентах. Для этого были придуманы сухопутные мосты, соединявшие континенты, но погрузившиеся в морскую пучину. Это было ещё одно рождение легенды об Атлантиде. Стоит отметить, что некоторые учёные не признали вердикт мировых авторитетов и продолжили поиск доказательств движения материков. Так дю Туа (Alexander du Toit ) объяснял образование гималайских гор столкновением Индостана и Евразийской плиты.

    Вялотекущая борьба фиксистов, как назвали сторонников отсутствия значительных горизонтальных перемещений, и мобилистов, утверждавших, что континенты всё-таки двигаются, с новой силой разгорелась в 1960-х годах, когда в результате изучения дна океанов были найдены ключи к пониманию «машины» под названием Земля.

    К началу 1960-х годов была составлена карта рельефа дна Мирового океана, которая показала, что в центре океанов расположены срединно-океанические хребты, которые возвышаются на 1,5—2 км над абиссальными равнинами, покрытыми осадками. Эти данные позволили Р. Дицу и Гарри Хессу в 1962 —1963 годах выдвинуть гипотезу спрединга. Согласно этой гипотезе, в мантии происходит конвекция со скоростью около 1 см/год. Восходящие ветви конвекционных ячеек выносят под срединно-океаническими хребтами мантийный материал, который обновляет океаническое дно в осевой части хребта каждые 300—400 лет. Континенты не плывут по океанической коре, а перемещаются по мантии, будучи пассивно «впаяны» в литосферные плиты. Согласно концепции спрединга, океанические бассейны структуры непостоянные, неустойчивые, континенты же — устойчивые.

    Возраст дна океанов (красный цвет соответствует молодой коре)

    В 1963 году гипотеза спрединга получает мощную поддержку в связи с открытием полосовых магнитных аномалий океанического дна. Они были интерпретированы как запись инверсий магнитного поля Земли, зафиксированная в намагниченности базальтов дна океана. После этого тектоника плит начала победное шествие в науках о Земле. Всё больше учёных понимали, что, чем тратить время на защиту концепции фиксизма, лучше взглянуть на планету с точки зрения новой теории и, наконец-то, начать давать реальные объяснения сложнейшим земным процессам.

    Сейчас тектоника плит подтверждена прямыми измерениями скорости плит методом интерферометрии излучения от далёких квазаров и измерениями с помощью спутниковых навигационных систем GPS. Результаты многолетних исследований полностью подтвердили основные положения теории тектоники плит.

    Современное состояние тектоники плит

    За прошедшие десятилетия тектоника плит значительно изменила свои основные положения. Ныне их можно сформулировать следующим образом:

    • Верхняя часть твёрдой Земли делится на хрупкую литосферу и пластичную астеносферу. Конвекция в астеносфере — главная причина движения плит.
    • Современная литосфера делится на 8 крупных плит, десятки средних плит и множество мелких. Мелкие плиты расположены в поясах между крупными плитами. Сейсмическая, тектоническая и магматическая активность сосредоточена на границах плит.
    • Литосферные плиты в первом приближении описываются как твёрдые тела, и их движение подчиняется теореме вращения Эйлера.
    • Существует три основных типа относительных перемещений плит
    1. расхождение (дивергенция), выражено рифтингом и спредингом;
    2. схождение (конвергенция) выраженное субдукцией и коллизией;
    3. сдвиговые перемещения по трансформным геологическим разломам.
    • Спрединг в океанах компенсируется субдукцией и коллизией по их периферии, причём радиус и объём Земли постоянны с точностью до термического сжатия планеты (в любом случае средняя температура недр Земли медленно, в течение миллиардов лет, уменьшается).
    • Перемещение литосферных плит вызвано их увлечением конвективными течениями в астеносфере.

    Существует два принципиально разных вида земной коры — кора континентальная (более древняя) и кора океаническая (не старше 200 миллионов лет). Некоторые литосферные плиты сложены исключительно океанической корой (пример — крупнейшая тихоокеанская плита), другие состоят из блока континентальной коры, впаянного в кору океаническую.

    Более 90 % поверхности Земли в современную эпоху покрыто 8 крупнейшими литосферными плитами:

    • Австралийская плита
    • Антарктическая плита
    • Африканская плита
    • Евразийская плита
    • Индостанская плита
    • Тихоокеанская плита
    • Северо-Американская плита
    • Южно-Американская плита

    Среди плит среднего размера можно выделить Аравийский полуостров, а так же плиты Кокос и Плиту Хуан де Фука, остатки огромной плиты Фаралон, слагавшей значительную часть дна Тихого океана, но ныне исчезнувшую в зоне субдукции под Северной и Южной Америками.

    Сила, двигающая плиты

    Сейчас уже нет сомнений, что горизонтальное движение плит происходит за счёт мантийных теплогравитационных течений — конвекции. Источником энергии для этих течений служит разность температуры центральных областей Земли, которые имеют очень высокую температуру (по оценкам, температура ядра составляет порядка 5000 °С) и температуры на её поверхности. Нагретые в центральных зонах Земли породы расширяются (см. термическое расширение ), плотность их уменьшается, и они всплывают, уступая место опускающимся более холодными и потому более тяжёлым массам, уже отдавшим часть тепла земной коре. Этот процесс переноса тепла (следствие всплывания лёгких-горячих масс и погружения тяжёлых-более холодных масс) идёт непрерывно, в результате чего возникают конвективные потоки. Эти потоки — течения замыкаются сами на себя и образуют устойчивые конвективные ячейки, согласующиеся по направлениям потоков с соседними ячейками. При этом в верхней части ячейки течение вещества происходит почти в горизонтальной плоскости, и именно эта часть течения увлекает плиты в горизонтальном же направлении с огромной силой за счёт огромной вязкости мантийного вещества. Если бы мантия была совершенно жидкой — вязкость пластичной мантии под корой была бы малой (скажем, как у воды или около того), то через слой такого вещества с малой вязкостью не могли бы проходить поперечные сейсмические волны. А земная кора увлекалась бы потоком такого вещества со сравнительно малой силой. Но, благодаря высокому давлению, при относительно низких температурах, господствующих на поверхности Мохоровичича и ниже, вязкость мантийного вещества здесь очень велика (так что в масштабе лет вещество мантии Земли жидкое (текучее), а в масштабе секунд — твёрдое).

    Движущей силой течения вязкого мантийного вещества непосредственно под корой является перепад высот свободной поверхности мантии между областью подъёма и областью опускания конвекционного потока. Этот перепад высот, можно сказать, величина отклонения от изостазии, образуется из-за разной плотности чуть более горячего (в восходящей части) и чуть более холодного вещества, поскольку вес более и менее горячего столбов в равновесии одинаков (при разной плотности!). На самом же деле, положение свободной поверхности не может быть измерено, оно может быть только вычислено (высота поверхности Мохоровичича + высота столба мантийного вещества, по весу эквивалентного слою более лёгкой коры над поверхностью Мохоровичича).

    Эта же движущая сила (перепада высот) определяет степень упругого горизонтального сжатия коры силой вязкого трения потока о земную кору. Величина этого сжатия мала в области восхождения мантийного потока и увеличивается по мере приближения к месту опускания потока (за счёт передачи напряжения сжатия через неподвижную твёрдую кору по направлению от места подъёма к месту спуска потока). Над опускающимся потоком сила сжатия в коре так велика, что время от времени превышается прочность коры (в области наименьшей прочности и наибольшего напряжения), происходит неупругая (пластическая, хрупкая) деформация коры — землетрясение. При этом из места деформации коры выдавливаются целые горные цепи, например, Гималаи (в несколько этапов).

    При пластической (хрупкой) деформации очень быстро (в темпе смещения коры при землетрясении) уменьшается и напряжение в ней — сила сжатия в очаге землетрясения и его окрестностях. Но сразу же по окончании неупругой деформации продолжается прерванное землетрясением очень медленное нарастание напряжения (упругой деформации) за счёт очень медленного же движения вязкого мантийного потока, начиная цикл подготовки следующего землетрясения.

    Таким образом, движение плит — следствие переноса тепла из центральных зон Земли очень вязкой магмой. При этом часть тепловой энергии превращается в механическую работу по преодолению сил трения, а часть, пройдя через земную кору, излучается в окружающее пространство. Так что наша планета в некотором смысле представляет собой тепловой двигатель.

    Относительно причины высокой температуры недр Земли существует несколько гипотез. В начале XX века была популярна гипотеза радиоактивной природы этой энергии. Казалось, она подтверждалась оценками состава верхней коры, которые показали весьма значительные концентрации урана, калия и других радиоактивных элементов , но впоследствии выяснилось, что содержания радиоактивных элементов в породах земной коры совершенно недостаточно для обеспечения наблюдаемого потока глубинного тепла. А содержание радиоактивных элементов в подкоровом веществе (по составу близком к базальтам океанического дна), можно сказать, ничтожно. Однако это не исключает достаточно высокого содержания тяжёлых радиоактивных элементов, генерирующих тепло, в центральных зонах планеты.

    Другая модель объясняет нагрев химической дифференциацией Земли. Первоначально планета была смесью силикатного и металлического веществ. Но одновременно с образованием планеты началась её дифференциация на отдельные оболочки. Более плотная металлическая часть устремилась к центру планеты, а силикаты концентрировались в верхних оболочках. При этом потенциальная энергия системы уменьшалась и превращалась в тепловую энергию.

    Другие исследователи полагают, что разогрев планеты произошёл в результате аккреции при ударах метеоритов о поверхность зарождающегося небесного тела. Это объяснение сомнительно — при аккреции тепло выделялось практически на поверхности, откуда оно легко уходило в космос, а не в центральные области Земли.

    Второстепенные силы

    Сила вязкого трения, возникающая вследствие тепловой конвекции, играет определяющую роль в движениях плит, но кроме неё на плиты действуют и другие, меньшие по величине, но также важные силы. Это — силы Архимеда , обеспечивающие плавание более лёгкой коры на поверхности более тяжёлой мантии. Приливные силы, обусловленные гравитационным воздействием Луны и Солнца (различием их гравитационного воздействия на разноудаленные от них точки Земли). А также силы, возникающие вследствие изменения атмосферного давления на различные участки земной поверхности — силы атмосферного давления достаточно часто изменяются на 3 %, что эквивалентно сплошному слою воды толщиной 0,3 м (или гранита толщиной не менее 10 см). Причём это изменение может происходить в зоне шириной в сотни километров, тогда как изменение приливных сил происходит более плавно — на расстояниях в тысячи километров.

    Дивергентные границы или границы раздвижения плит

    Это границы между плитами, двигающимися в противоположные стороны. В рельефе Земли эти границы выражены рифтами, в них преобладают деформации растяжения, мощность коры пониженная, тепловой поток максимален, и происходит активный вулканизм. Если такая граница образуется на континенте, то формируется континентальный рифт, который в дальнейшем может превратиться в океанический бассейн с океаническим рифтом в центре. В океанических рифтах в результате спрединга формируется новая океаническая кора.

    Океанические рифты

    Схема строения срединно-океанического хребта

    Подробнее по этой теме см.: Срединно-океанический хребет.

    На океанической коре рифты приурочены к центральным частям срединно-океанических хребтов. В них происходит образование новой океанической коры. Общая их протяжённость более 60 тысяч километров. К ним приурочено множество гидротермальных источников, которые выносят в океан значительную часть глубинного тепла, и растворённых элементов. Высокотемпературные источники называются чёрными курильщиками , с ними связаны значительные запасы цветных металлов .

    Континентальные рифты

    Раскол континента на части начинается с образования рифта. Кора утончается и раздвигается, начинается магматизм. Формируется протяжённая линейная впадина глубиной порядка сотен метров, которая ограничена серией сбросов. После этого возможно два варианта развития событий: либо расширение рифта прекращается и он заполняется осадочными породами , превращаясь в авлакоген, либо континенты продолжают раздвигаться и между ними, уже в типично океанических рифтах, начинает формироваться океаническая кора.

    Конвергентные границы

    Подробнее по этой теме см.: Зона субдукции.

    Конвергентными называются границы, на которых происходит столкновение плит. Возможно три варианта:

    1. Континентальная плита с океанической. Океаническая кора плотнее, чем континентальная и погружается под континент в зоне субдукции.
    2. Океаническая плита с океанической. В таком случае одна из плит заползает под другую и также формируется зона субдукции, над которой образуется островная дуга.
    3. Континентальная плита с континентальной. Происходит коллизия, возникает мощная складчатая область. Классический пример — Гималаи.

    В редких случаях происходит надвигание океанической коры на континентальную — обдукция. Благодаря этому процессу возникли офиолиты Кипра, Новой Каледонии, Омана и другие.

    В зонах субдукции поглощается океаническая кора, и тем самым компенсируется её появление в срединно-океанических хребтах. В них происходят исключительно сложные процессы, взаимодействия коры и мантии. Так океаническая кора может затягивать в мантию блоки континентальной коры, которые по причине низкой плотности эксгумируются обратно в кору. Так возникают метаморфические комплексы сверхвысоких давлений, один из популярнейших объектов современных геологических исследований.

    Большинство современных зон субдукции расположены по периферии Тихого океана, образуя тихоокеанское огненное кольцо. Процессы, идущие в зоне конвегенции плит, по праву считаются одними из самых сложных в геологии. В ней смешиваются блоки разного происхождения, образуя новую континентальную кору.

    Активные континентальные окраины

    Активная континентальная окраина

    Подробнее по этой теме см.: Активная континентальная окраина.

    Активная континентальная окраина возникает там, где под континент погружается океаническая кора. Эталоном этой геодинамической обстановки считается западное побережье Южной Америки, её часто называют андийским типом континентальной окраины. Для активной континентальной окраины характерны многочисленные вулканы и вообще мощный магматизм. Расплавы имеют три компонента: океаническую кору, мантию над ней и низы континентальной коры.

    Под активной континентальной окраиной происходит активное механическое взаимодействие океанической и континентальной плит. В зависимости от скорости, возраста и мощности океанической коры возможны несколько сценариев равновесия. Если плита двигается медленно и имеет относительно малую мощность, то континент соскабливает с неё осадочный чехол. Осадочные породы сминаются в интенсивные складки, метаморфизуются и становятся частью континентальной коры. Образующаяся при этом структура называется аккреционным клином . Если скорость погружающейся плиты высока, а осадочный чехол тонок, то океаническая кора стирает низ континента и вовлекает его в мантию.

    Островные дуги

    Островная дуга Подробнее по этой теме см.: Островная дуга.

    Островные дуги — это цепочки вулканических островов над зоной субдукции, возникающие там, где океаническая плита погружается под океаническую. В качестве типичных современных островных дуг можно назвать Алеутские, Курильские, Марианские острова, и многие другие архипелаги. Японские острова также часто называют островной дугой, но их фундамент очень древний и на самом деле они образованы несколькими разновременными комплексами островных дуг, так что Японские острова являются микроконтинентом.

    Островные дуги образуются при столкновении двух океанических плит. При этом одна из плит оказывается снизу и поглощается в мантию. На верхней же плите образуются вулканы островной дуги. Выгнутая сторона островной дуги направлена в сторону поглощаемой плиты. С этой стороны находятся глубоководный желоб и преддуговый прогиб.

    За островной дугой расположен задуговый бассейн (типичные примеры: Охотское море, Южно-Китайское море и т.д.) в котором также может происходить спрединг.

    Коллизия континентов

    Столкновение континентов

    Подробнее по этой теме см.: Коллизия континентов.

    Столкновение континентальных плит приводит к смятию коры и образованию горных цепей. Примером коллизии является Альпийско-Гималайский горный пояс , образовавшийся в результате закрытия океана Тетис и столкновения с Евразийской плитой Индостана и Африки. В результате мощность коры значительно увеличивается, под Гималаями она составляет 70 км. Это неустойчивая структура, она интенсивно разрушается поверхностной и тектонической эрозией. В коре с резко увеличенной мощностью идёт выплавка гранитов из метаморфизованных осадочных и магматических пород. Так образовались крупнейшие батолиты, напр., Ангаро-Витимский и Зерендинский.

    Трансформные границы

    Там, где плиты двигаются параллельным курсом, но с разной скоростью, возникают трансформные разломы — грандиозные сдвиговые нарушения, широко распространённые в океанах и редкие на континентах.

    Трансформные разломы

    Подробнее по этой теме см.: Трансформный разлом.

    В океанах трансформные разломы идут перпендикулярно срединно-океаническим хребтам (СОХ) и разбивают их на сегменты шириной в среднем 400 км. Между сегментами хребта находится активная часть трансформного разлома. На этом участке постоянно происходят землетрясения и горообразование, вокруг разлома формируются многочисленные оперяющие структуры — надвиги, складки и грабены. В результате, в зоне разлома нередко обнажаются мантийные породы.

    По обе стороны от сегментов СОХ находятся неактивные части трансформных разломов. Активных движений в них не происходит, но они чётко выражены в рельефе дна океанов линейными поднятиями с центральной депрессией.

    Трансформные разломы формируют закономерную сетку и, очевидно, возникают не случайно, а в силу объективных физических причин. Совокупность данных численного моделирования, теплофизических экспериментов и геофизических наблюдений позволила выяснить, что мантийная конвекция имеет трёхмерную структуру. Кроме основного течения от СОХ, в конвективной ячейке за счёт остывания верхней части потока, возникают продольные течения. Это остывшее вещество устремляется вниз вдоль основного направления течения мантии. В зонах этого второстепенного опускающегося потока и находятся трансформные разломы. Такая модель хорошо согласуется с данными о тепловом потоке: над трансформными разломами наблюдается его понижение.

    Сдвиги на континентах

    Подробнее по этой теме см.: Сдвиг.

    Сдвиговые границы плит на континентах встречаются относительно редко. Пожалуй, единственным ныне активным примером границы такого типа является разлом Сан-Андреас, отделяющий Северо-Американскую плиту от Тихоокеанской. 800-мильный разлом Сан-Андреас — один из самых сейсмоактивных районов планеты: в год плиты смещаются относительно друг друга на 0,6 см, землетрясения с магнитудой более 6 единиц происходят в среднем раз в 22 года. Город Сан-Франциско и большая часть района бухты Сан-Франциско построены в непосредственной близости от этого разлома.

    Внутриплитные процессы

    Первые формулировки тектоники плит утверждали, что вулканизм и сейсмические явления сосредоточены по границам плит, но вскоре стало ясно, что и внутри плит идут специфические тектонические и магматические процессы, которые также были интерпретированы в рамках этой теории. Среди внутриплитных процессов особое место заняли явления долговременного базальтового магматизма в некоторых районах, так называемые горячие точки.

    Горячие точки

    На дне океанов расположены многочисленные вулканические острова. Некоторые из них расположены в цепочках с последовательно изменяющимся возрастом. Классическим примером такой подводной гряды стал Гавайский подводный хребет. Он поднимается над поверхностью океана в виде Гавайских островов, от которых на северо-запад идёт цепочка подводных гор с непрерывно увеличивающимся возрастом, некоторые из которых, например, атолл Мидуэй, выходят на поверхность. На расстоянии порядка 3000 км от Гавайев цепь немного поворачивает на север и называется уже Императорским хребтом . Он прерывается в глубоководном желобе перед Алеутской островной дугой.

    Для объяснения этой удивительной структуры было сделано предположение, что под Гавайскими островами находится горячая точка — место, где к поверхности поднимается горячий мантийный поток, который проплавляет двигающуюся над ним океаническую кору. Таких точек сейчас на Земле установлено множество. Мантийный поток, который их вызывает, был назван плюмом. В некоторых случаях предполагается исключительно глубокое происхождение вещества плюмов, вплоть до границы ядра — мантии.

    Траппы и океанические плато

    Кроме долговременных горячих точек, внутри плит иногда происходят грандиозные излияния расплавов, которые на континентах формируют траппы, а в океанах океанические плато. Особенность этого типа магматизма в том, что он происходит за короткое в геологическом смысле время — порядка нескольких миллионов лет, но захватывает огромные площади (десятки тысяч км²); при этом изливается колоссальный объём базальтов, сравнимый с их количеством, кристаллизующимся в срединно-океанических хребтах.

    Известны сибирские траппы на Восточно-Сибирской платформе , траппы плоскогорья Декан на Индостанском континенте и многие другие. Причиной образования траппов также считаются горячие мантийные потоки, но в отличие от горячих точек они действуют кратковременно, и разница между ними не совсем ясна.

    С точки зрения кинематического подхода , движения плит можно описать геометрическими законами перемещения фигур на сфере. Земля рассматривается как мозаика плит разного размера, перемещающихся относительно друг друга и самой планеты. Палеомагнитные данные позволяют восстановить положение магнитного полюса относительно каждой плиты на разные моменты времени. Обобщение данных по разным плитам привело к реконструкции всей последовательности относительных перемещений плит. Объединения этих данных с информацией, полученной из неподвижных горячих точек, сделало возможным определить абсолютные перемещения плит и историю движения магнитных полюсов Земли.

    Теплофизический подход рассматривает Землю как тепловую машину, в которой тепловая энергия частично превращается в механическую. В рамках этого подхода движение вещества во внутренних слоях Земли моделируется как поток вязкой жидкости, описываемый уравнениями Навье — Стокса. Мантийная конвекция сопровождается фазовыми переходами и химическими реакциями, которые играют определяющую роль в структуре мантийных течений. Основываясь на данных геофизического зондирования, результатах теплофизических экспериментов и аналитических и численных расчётах, учёные пытаются детализировать структуру мантийной конвекции, найти скорости потоков и другие важные характеристики глубинных процессов. Особенно важны эти данные для понимания строения самых глубоких частей Земли — нижней мантии и ядра, которые недоступны для непосредственного изучения, но, несомненно, оказывают огромное влияние на процессы, идущие на поверхности планеты.

    Геохимический подход . Для геохимии тектоника плит важна как механизм непрерывного обмена веществом и энергией между различными оболочками Земли. Для каждой геодинамической обстановки характерны специфические ассоциации горных пород. В свою очередь, по этим характерным особенностям можно определить геодинамическую обстановку, в которой образовалась порода.

    Исторический подход . В смысле истории планеты Земля, тектоника плит — это история соединяющихся и раскалывающихся континентов, рождения и угасания вулканических цепей, появления и закрытия океанов и морей. Сейчас для крупных блоков коры история перемещений установлена с большой детальностью и за значительный промежуток времени, но для небольших плит методические трудности много большие. Самые сложные геодинамические процессы происходят в зонах столкновения плит, где образуются горные цепи, сложенные множеством мелких разнородных блоков — террейнов. При изучении Скалистых гор зародилось особое направление геологических исследований — террейновый анализ, который вобрал в себя комплекс методов, по выделению террейнов и реконструкции их истории.

    Подробнее по этой теме см.: Древние материки.

    Подробнее по этой теме см.: История перемещения плит .

    Восстановление прошлых перемещений плит — один из основных предметов геологических исследований. С различной степенью детальности положение континентов и блоков, из которых они сформировались, реконструировано вплоть до архея.

    Из анализа перемещений континентов было сделано эмпирическое наблюдение, что континенты каждые 400—600 млн лет собираются в огромный материк, содержащий в себе почти всю континентальную кору — суперконтинент. Современные континенты образовались 200—150 млн лет назад, в результате раскола суперконтинента Пангеи. Сейчас континенты находятся на этапе почти максимального разъединения. Атлантический океан расширяется, а Тихий океан закрывается. Индостан движется на север и сминает Евразийскую плиту, но, видимо, ресурс этого движения уже почти исчерпан, и в скором геологическом времени в Индийском океане возникнет новая зона субдукции, в которой океаническая кора Индийского океана будет поглощаться под Индийский континент.

    Влияние перемещений плит на климат

    Расположение больших континентальных массивов в приполярных областях способствует общему понижению температуры планеты, так как на континентах могут образовываться покровные оледенения . Чем шире развито оледенение, тем больше альбедо планеты и тем ниже среднегодовая температура.

    Кроме того, взаимное расположение континентов определяет океаническую и атмосферную циркуляцию.

    Однако простая и логичная схема: континенты в приполярных областях — оледенение, континенты в экваториальных областях — повышение температуры, оказывается неверной при сопоставлении с геологическими данными о прошлом Земли. Четвертичное оледенение действительно произошло, когда в районе Южного полюса оказалась Антарктида, и в северном полушарии Евразия и Северная Америка приблизились к Северному полюсу. С другой стороны, сильнейшее протерозойское оледенение, во время которого Земля оказалась почти полностью покрыта льдом, произошло тогда, когда большая часть континентальных массивов находилась в экваториальной области.

    Кроме того, существенные изменения положения континентов происходят за время порядка десятков миллионов лет, в то время как, суммарная продолжительность ледниковых эпох составляет порядка нескольких миллионов лет, и во время одной ледниковой эпохи происходят циклические смены оледенений и межледниковых периодов. Все эти климатические изменения происходят быстро по сравнению со скоростями перемещения континентов, и поэтому движение плит не может быть их причиной.

    Из вышесказанного следует, что перемещения плит не играют определяющей роли в климатических изменениях, но могут быть важным дополнительным фактором, «подталкивающим» их.

    Значение тектоники плит

    Тектоника плит сыграла в науках о Земле роль, сравнимую с гелиоцентрической концепцией в астрономии, или открытием ДНК в генетике. До принятия теории тектоники плит, науки о Земле носили описательный характер. Они достигли высокого уровня совершенства в описании природных объектов, но редко могли объяснить причины процессов. В разных разделах геологии могли доминировать противоположные концепции. Тектоника плит связала различные науки о Земле, дала им предсказательную силу.

    Многие из вас-даже те, кто только изредка видит горные карьеры, дорожные выемки или утесы на берегу моря,-замечали резкие изменения структуры горных пород. В некоторых местах видно, как породы одного типа упираются в породы совершенно иного типа, отделяясь от них узкой линией контакта. В других местах пласты одной и той же породы несомненно испытали смещения, вертикальные или горизонтальные. Такие резкие изме­нения геологической структуры называются разломами. На рис. 1 отчетливо различается вертикальное смещение слоев горных по­род по разлому, обнаженному в стенке Коринфского канала в Греции.

    Длина разломов может колебаться от нескольких метров до многих километров. Работая в поле, геологи находят в структуре горных пород много тектонических границ, которые они интер­претируют как разломы и наносят на геологические карты сплошными или прерывистыми линиями. Наличие таких разло­мов указывает на то, что когда-то в прошлом вдоль них проис­ходили те или иные движения. Мы знаем теперь, что такие дви­жения могут быть либо медленным проскальзыванием, которое не производит никаких колебаний грунта, либо резким вспарыва­нием, вызывающим ощутимые вибрации — землетрясения. В пре­дыдущей главе мы рассмотрели один из самых известных приме­ров резкой подвижки по разлому — вспарывание разлома Сан-Ан­дреас в апреле 1906 г. Однако наблюдаемый при большинстве мелкофокусных землетрясений след разрыва на поверхности имеет гораздо меньшие размеры, и гораздо меньшим бывает сме­щение. При большинстве землетрясений возникающий разрыв не достигает дневной поверхности и поэтому его нельзя непос­редственно увидеть.

    Разломы, обнаруживаемые на поверхности, иногда уходят на значительную глубину внутрь внешней оболочки Земли; эту обо­лочку называют земной корой. Она представляет собой камен­ную скорлупу толщиной от 5 до 40 км и составляет верхнюю часть литосферы.

    Необходимо подчеркнуть, что по большинству разломов, на­несенных на геологические карты, подвижки уже не происходят*). Последнее смещение по типичному такому разлому могло про­изойти десятки тысяч или даже миллионы лет назад. Локальные напряжения, вызвавшие разрушение горных пород в данном ме­сте Земли, возможно, давно уже ослабли, а химические процессы, включая циркуляцию воды, могли залечить образовавшиеся раз­рывы, особенно на глубине. Такие неактивные разломы не стано­вятся источниками землетрясений и, возможно, не станут ими никогда.

    Главное наше внимание привлекают, конечно, активные раз­ломы, по которым могут возникать смещения блоков земной коры. Многие из этих разломов располагаются в довольно от­четливо выраженных тектонически активных зонах Земли, таких как срединно-океанические хребты и молодые горные цепи. Од­нако внезапное оживление разломов может произойти и вдали от районов с хорошо заметной в настоящее время тектониче­ской активностью *).

    Методами геологического анализа можно определить неко­торые свойства разломов. Например, эпизодические подвижки по разломам, происходившие в последние тысячелетия, оставляют в рельефе такие следы, как депрессионные озера, линии родни­ков, свежие сбросовые уступы. Многие топографические особен­ности зоны разлома Сан-Андреас можно увидеть на рис. 1 гл. 2. Но точно установить последовательность и время таких движе­ний бывает гораздо труднее. Некоторые сведения хронологиче­ского характера можно получить из таких фактов, как смещение вышележащих грунтов и молодых осадочных отложений. Про­ходка траншей глубиной в несколько метров поперек разломов также оказалась эффективным средством изучения смещений. Даже самые мелкие подвижки в слоях по обе стороны траншеи можно закартировать, а промежутки времени между смещения­ми по разломам можно установить по возрасту и свойствам по­род, которые были смещены (рис. 2). Иногда фактическое время подвижки можно оценить по известному возрасту захороненного органического материала,-скажем листьев или веток. Даже на морском дне с помощью современных геофизических методов можно картировать разломы довольно точно. На исследователь­ских судах в море регистрируют звуковые волны, отраженные от слоев ила, и ка полученных записях видны смещения этих слоев, которые можно считать разломами.

    1 -трещина, заполненная глинистым, алевритовым и песчаным материалом; 2-слой А: тонкая дресва известняков-ракушечников-самые молодые отложения озера Кауилья; 3-массивные светло-коричневые глины и алевриты, содержащие редкие остатки моллю­сков и тонкие сильно карбонатизированные прослои; 4-светлые серо-зеленые карбонатные алевриты с многочисленными моллюсками; 5-листоватые косослоистые и массивные глины, алевриты, пески, местами с линзами галек, повсюду редкие остатки моллюсков; 6-гео­логические границы (штрихами показаны участки, проведенные приблизительно); 7-тре­щины ^штрихами показано предполагаемое положение).

    Как на суше, так и под водами океана смещения по разломам можно разделить на три типа, как показано на рис. 3. Плоскость разрыва пересекает горизонтальную поверхность грунта по ли­

    нии, идущей под каким-то углом к направлению на север. Этот угол называется углом простирания разлома. Сама плоскость разлома обычно не вертикальна и уходит в глубь Земли под не­которым углом. Если породы на той стороне разлома, которая нависает над трещиной (говорят: на висячем боку разлома), сме­щаются вниз и оказываются ниже, чем на противоположной сто­роне, то перед нами сброс. Угол падения сброса изменяется от 0 до 90°, Если же висячий бок разлома смещен вверх относитель­но нижнего, лежачего, бока, то такой разлом называется взбро­сом. Взбросы с малым углом падения называются надвигами. Разломы, возникающие в очагах землетрясений в области океани­ческих хребтов,-это преимущественно сбросы, а в глубоководных желобах возникает много землетрясений, связанных с подвиж­ками типа надвига.

    И сбросы, и взбросы характеризуются вертикальными смеще­ниями, которые на поверхности имеют вид структурных уступов; движение в обоих случаях происходит по падению (или по восста­нию) плоскости разлома. Если же, напротив, с разломом связаны только горизонтальные смещения по простиранию, то такие раз­ломы называются сдвигами. Полезно договориться о каких-то простых терминах, которые говорили бы о направлении смеще­ний. Например, на рис. 3 стрелками на схеме сдвига показано, что движение было направлено в левую сторону. Определить, был ли сдвиг лево- или правосторонним, нетрудно. Вообразите, что вы стоите на одной стороне разлома и смотрите на другую его сторону. Если противоположная сторона смещена справа на­лево, это левосторонний (левый) сдвиг, если же слева направо-правосторонний (правый) сдвиг. Конечно, смещение по разлому может иметь обе составляющие: и по падению, и по простира­нию (такие разломы носят названия сбросо-сдвиг или взбросо-сдвиг- Перев.).

    При землетрясении серьезные разрушения могут возникнуть не только в результате колебаний грунта, но и вследствие самого смещения по разлому, хотя этот особый вид сейсмической опас­ности имеет очень ограниченное площадное распространение. Обычно этой опасности можно избежать, получив своевремен­ную (перед началом строительства) геологическую консультацию о расположении активных разломов. Площади по обе стороны активного разлома часто оставляют незастроенными и исполь­зуют для общественного отдыха, площадок для гольфа, для ав­тостоянок, дорог и т.д.

    При планировании землепользования необходимо учитывать также, что на площадях, примыкающих к вскрывшемуся разло­му, характер разрушений, обусловленных сползанием и обруше­нием грунта, зависит от типа разлома. Если смещение происхо­дит по падению разлома, то с возникновением уступа бывают связаны разрушения (вследствие локальных явлений оползания, растрескивания и обрушения грунта) в довольно широкой поло­се, идущей вдоль самого разлома. Если же происходит смещение по простиранию разлома, то зона нарушений в грунте обычно оказывается гораздо менее широкой, и здания, расположенные всего в нескольких местах от разрыва, могут совсем не испытать повреждений.


    Санкт-Петербург — один из самых красивых городов мира. Роскошная архитектура, завораживающие пейзажи и внешнее впечатление праздничности и абсолютного благополучия — таким город кажется со стороны. Но возникает вопрос, почему же тогда образ Петербурга в произведениях классиков, живших в этом городе, предстаёт всегда как средоточие необъяснимой тоски, беспредельной печали и леденящего равнодушия? Почему один из самых прекрасных городов на земле вызывает столь пониженные настроения и чувства?

    Согласно мнениям экологов, истоки общего подавленного настроения жителей Санкт-Петербурга и угнетающей атмосферы самого города кроются в специфике его географического положения. Санкт-Петербург расположен на стыке четырёх тектонических пластин: Балтийского щита и Русской плиты по одной линии и двух пластин на обширном разломе Северо-западного направления — по другой. На таких разломах обязательно возникают геопатогенные зоны (ГПЗ).

    Геопатогенные зоны (от слов «Гео» — ‘Земля’ и «патология» — ‘болезнь’) — это места над геологическими разломами земной коры, на которых прослеживаются различного рода аномалии: многоквартирные дома, все жильцы которых заболевают раком; постоянные автомобильные аварии на одних и тех же ровных участках дороги; места в полях, где ежегодно урожай бывает безо всяких видимых на то причин в разы ниже, чем на всей остальной территории и т.д.

    Возникновение геопатогенных зон

    Как же формируются геопатогенные зоны? По мнению учёных, ГПЗ появляются при сдвигах тектонических пластин. Смещения эти происходят естественным путём в результате вращения планеты. Но вследствие сдвигов геологических пластов в минеральных породах происходят разрывы химических связей, что приводит к образованию «деформационной» высоковольтной плазмы. Микроскопические элементы этой плазмы начинают активно перемещаться в направлении к поверхности Земли. Так и возникают геопатогенные зоны.

    Места формирования геопатогенных зон:

    • Районы, где протекают водоносные потоки (причём неважно, внутренние это воды или открытые реки, каналы, ручьи). Надо отметить, что, чем сильнее поток, тем более неблагоприятное действие он оказывает на человека.
    • Места, расположенные над тектоническими разломами земной коры, над карстовыми пещерами и пустотными образованиями.
    • Участки, основанные на стыке подземных коммуникаций: метро, канализация, водопровод и т.п.
    • Районы над скоплениями железных, медных и прочих руд.
    • Участки пересечения мировых геоэнергетических сеток Хартмана и Карри. Глобальная геоэнергетическая сетка Хартмана сквозными линиями проходит через Землю с севера на юг и с запада на восток. Сеть Карри исчерчивает нашу планету в направлениях: Северо-Восток — Юго-Запад и Северо-Запад — Юго-Восток.

    Геопатогенные зоны Ленинградской области

    Земная кора под территорией Ленинградской области имеет множество тектонических разломов. Следовательно, геопатогенных зон в области предостаточно.

    После геологических исследований Ленинградской области выяснилось, что в районах геопатогенных зон расположены Оредеж, Отрадное-на-Неве (п. Сосново) и Чудово. Все эти населённые пункты находятся над пересечениями геологических разломов. О наличии геопатогенных зон в этих районах свидетельствуют не только географические, но и медицинские показатели. Именно в Оредеже, Отрадном-на-Неве и Чудове зафиксирована наибольшая по Ленинградской области частотность возникновения онкологических заболеваний.

    Геопатогенные зоны Санкт-Петербурга

    Санкт-Петербург расположен на пересечении четырёх тектонических трансконтинентальных разломов. Они уходят на многие километры в глубину земной коры и определяют в Санкт-Петербурге береговые границы Финского залива и план речной сети. Помимо этих разломов протяжённостью в несколько сотен километров, в земной коре под городом обнаружены и другие: от нескольких сантиметров до десятков метров.

    Установлено, что геопатогенные зоны оказывают влияние и на биосферу, и на человека. В местах тектонических разломов часто случаются разрывы коммуникаций, наблюдается чрезмерно интенсивное течение вод и т.п. На сегодняшний день существует реальная угроза метановых взрывов в Санкт-Петербурге. Метан собирается над зонами геологических разломов в подвалах, на территориях засыпанных и заасфальтированных болот.

    Но места метановых скоплений в Санкт-Петербурге ещё не так страшны, как геопатогенные зоны на пересечениях тектонических разломов. Главные узлы геологических стыков приходятся на Красносельский район, Васильевский остров, Озерки, Гражданку, Купчино и районы вдоль реки Невы.

    Во многих районах Санкт-Петербурга от 20 до 40 % населения живёт прямо в геопатогенных зонах. Проживание в «гиблых» местах, безусловно, отрицательно сказывается на физическом и психическом здоровье людей. Доказательством неблагоприятного воздействия ГПЗ на человека являются, например, факты статистики ДТП в Калининском районе Санкт-Петербурга и на дороге Санкт-Петербург — Мурманск. ДТП в этих местах случаются на 30 % чаще, чем в остальных районах. У людей, проживающих или работающих в геопатогенных зонах, наблюдается повышенный уровень заболеваемости раком и другими недугами.

    Со 100% надёжностью определить месторасположение геопатогенной зоны могут только профессионалы с помощью специализированного оборудования. В Ленинградской области за квалифицированной поддержкой Вы можете обратиться в Региональный геолого-экологический центр Государственного федерального унитарного предприятия «Невскгеология».

    С меньшей долей точности геопатогенную зону можно обнаружить и самостоятельно — по народным приметам.

    Предсказывать местонахождение «гиблых» мест в России умели ещё в 18 — 19 веках. Тогда этим занимались специальные царские комиссии.

    Сегодня о наличии ГПЗ судят по их влиянию на биосферу и на человека.

    Обнаружить геопатогенную зону можно по растениям. Над ГПЗ хорошо развиваются такие деревья, как ольха, дуб, вяз, ясень, осина. А вот хвойные (ель, сосна), а также липа и берёза в «гиблых» местах чахнут, приобретают уродливые наросты, искривления и раздвоения стволов. Плодовые деревья в геопатогенных зонах приносят малый урожай, рано теряют листву, болеют. Кроме того, в ГПЗ нередко в деревья попадают молнии.

    Геопатогенные зоны просто притягивают такие травяные растения, как тысячелистник, зверобой, аптечная ромашка. А вот подорожника и лапчатки в ГПЗ Вы никогда не встретите. Урожай картошки в геопатогенных зонах в 2 — 3 раза ниже, чем на нормальных полях.

    Кустарники геопатогенные зоны не любят: малина засыхает, смородина не развивается.

    Что касается животных, то в геопатогенных зонах комфортно себя чувствуют муравьи, пчёлы, змеи и кошки.

    Все остальные животные плохо переносят нахождение в ГПЗ. Коровы заболевают лейкозом, туберкулёзом и маститом. Резко снижаются удои молока. Собаки не спят в ГПЗ. Овцы и лошади, живущие в геопатогенных зонах, часто страдают бесплодием. Свинья стремится перенести своё потомство подальше от «гиблых» мест. Даже вездесущие мыши избегают ГПЗ и ведут себя гиперактивно, если вдруг в них случайно попадают.

    Влияние геопатогенных зон на человека

    У людей, проживающих в условиях «гиблых» мест, развивается геопатогенное отягощение организма. Его признаками являются: чрезмерная нервозность, слабость, необоснованная тревожность, ускоренное сердцебиение, частые головные боли, отёчность пальцев на руках, жжение или покалывание кожи, проблема холодных ног. Дети в геопатогенных зонах страдают от постоянных беспричинных страхов, у них снижается аппетит. В ГПЗ также у человека нередко изменяется температура тела и кровяное давление.

    «Гиблые» места провоцируют возникновение и развитие онкологических заболеваний и психических расстройств. Они способны разрушить нервную систему человека, довести его до самоубийства.

    Помимо этого, геопатогенные зоны могут вызвать поражение суставов, сердечно-сосудистые заболевания, бронхиальную астму, артрит и т.д.

    Если люди два с половиной года и более проведут на линиях Хартмана, они с большой долей вероятности приобретут онкологическое заболевание или туберкулёз.

    Люди, спящие в геопатогенной зоне, страдают от кошмаров и бессонницы. Если ГПЗ находится в изголовье кровати, у человека, спящего на ней, также повышается риск возникновения инсульта, воспаления суставов на ногах, заболевания онкологией мозга, раком желудка, холециститом, язвой кишечника, варикозным расширением вен.

    Геопатогенное отягощение организма можно определить при помощи вегетативно-резонансного теста даже спустя 10 — 15 лет после пребывания человека в аномальной зоне. Характерной особенностью людей с геопатогенным отягощением является то, что они абсолютно не поддаются никаким методам лечения, кроме биорезонансной терапии.

    Единственной возможностью вылечить человека от геопатогенного отягощения является его срочная эвакуация из ГПЗ.

    Однако, согласно мнениям некоторых исследователей, геопатогенные зоны способны оказывать не только отрицательное, но и положительное воздействие на человека. По гипотезе этих учёных, ГПЗ стимулируют творческую активность населения.

    Таким образом, становится понятным неординарное сочетание одновременно праздничности и подавленности в атмосфере Санкт-Петербурга. Теперь ясно, о чём писали великие классики и что подстёгивало их творческое вдохновение.

    Разлом, активизированный при Спитакском землетрясении 1988 года в Северной Армении: при землетрясении по разлому произошла подвижка, выразившаяся в образовании уступа поверхности высотой до 1,8 м

    ЧТО ТАКОЕ ЖИВОЙ РАЗЛОМ

    Со школьной скамьи мы знаем, что земная кора нарушена многочисленными разломами. До недавнего времени геологи полагали, что имеют дело с образованиями далекого геологического прошлого, и, как правило, даже не искали способа убедиться в их современной активности.

    Вместе с тем уже давно специалисты обратили внимание на трещины и смещения земной поверхности при катастрофических землетрясениях. Чаще всего их считали приповерхностными нарушениями грунта от сейсмических сотрясений. Но еще в конце XIX века И.В. Мушкетов предположил, что такого рода разрывы являются выходами на поверхность разлома, подвижка по которому и была причиной землетрясения. Впоследствии его догадка подтвердилась, и потребность прогнозирования мест возможных будущих землетрясений заставила обратить на живые разломы особое внимание.

    Термин «живой» или «активный» разлом появился в геологической литературе в конце 40-х годов XX века для обозначения разломов, проявляющих подвижность сейчас и способных проявлять ее в ближайшем будущем. Однако понятие «сейчас» в геологии, имеющей дело с событиями, нередко длящимися миллионы лет, неоднозначно. По одним разломам, например на границе Памира и Тянь-Шаня или в Калифорнии, движения земной коры происходят почти непрерывно, сопровождаясь частыми, но относительно слабыми землетрясениями, и фиксируются смещениями стен, заборов и дорожных покрытий на сантиметры в несколько лет. Другие разломы могут не обнаруживать признаков активности сотни и даже тысячи лет, а затем при сильном землетрясении дать импульс смещения амплитудой в метры. Таковы крупнейшие разломы Монголии и отдельные сегменты гигантского разлома Сан-Андреас в Калифорнии. Наконец, есть живые разломы, и их большинство, которые совмещают сильные сейсмические импульсы с медленными движениями в промежутках между ними. Таков, например, Северо-Анатолийский разлом Турции.

    Следовательно, необходимо исследовать определенный временной интервал жизни разлома, чтобы установить его активность и определить ее параметры: интенсивность (среднюю скорость, рассчитываемую по амплитуде смещения в установленный промежуток времени), направление и режим движений. К. Аллен посчитал таким интервалом последние 10-12 тыс. лет, а А.А. Никонов расширил его до сотен тысяч лет. Дальнейшие исследования показали, что в подвижных поясах Земли для оценки параметров активности разлома достаточно изучить его жизнь в течение позднего плейстоцена и голоцена, то есть последних 100-150 тыс. лет, а в равнинных областях с вялыми движениями и редкими землетрясениями следует принимать во внимание и среднеплейстоценовую активность разлома, то есть его поведение в последние 700 тыс. лет.

    КАК ИЗУЧАЮТ ЖИВЫЕ РАЗЛОМЫ

    Рис. 1. Примеры живых разломов: а — аэрофотоснимок Таласо-Ферганского разлома в Центральном Тянь-Шане, Кыргызстан: горизонтальное смещение мелких водотоков на величину до 35 м; б — ветвь Левантской зоны разломов на западном берегу Мертвого моря в Израиле: при землетрясении 31 г. до н.э. по разлому прошла подвижка, сместившая на величину до 0,3 м ступени водного бассейна в Кумране Для обнаружения активности разлома используют комплекс геолого-геоморфологических, геофизических и геодезических методов. Наиболее широко применяют геолого-геоморфологические методы – выявление смещений и деформаций в зоне разлома молодых отложений и форм рельефа: русел, морских и речных террас (рис. 1). Особенно надежно определять движения вдоль разломов по смещениям современных и древних сооружений (зданий, ирригационных систем), поскольку в таких случаях более точно устанавливаются возраст и соответственно скорость подвижки. Так, вдоль Главного Копетдагского разлома на юге Туркменистана обнаружены горизонтальные смещения на несколько метров древних подземных оросительных галерей и даже стены средневековой крепости. Длительность выявленных подвижек оценивается по возрасту геологических образований и сооружений, смещенных разломом и перекрывающих смещение. Хорошие результаты дают радиоизотопные методы (радиоуглеродный по отношению 14С / 12С и уран-иониевый по отношению изотопов урана), а также исторические и археологические оценки. Широко применяют методы геологической и геоморфологической корреляции смещений с удаленными датированными объектами.

    Рис. 1. г — Дарваз-Алтайская зона разломов на северо-западной окраине Памира в Таджикистане: горизонтальное смещение на 50 км краевых морен последнего оледенения на левобережье р. Муксу О современных подвижках по разлому можно судить по изменению относительного положения пунктов повторных геодезических измерений, расположенных в его крыльях. Многолетние исследования показали, что более устойчивы горизонтальные перемещения вдоль разлома (сдвиги) и поперек к нему (надвиг одного крыла на другое или их раздвигание), тогда как вертикальная компонента перемещений подвержена частым вариациям, иногда намного превосходящим многовековой тренд. Поэтому наилучшие результаты дают космогеодезические наблюдения с помощью спутников, приемников и средств обработки данных так называемой GPS-системы, у которой точность измерений горизонтальных перемещений достигает первых миллиметров. Сущность системы в том, что спутник с точно определяемыми параметрами орбиты посылает сигналы, прием которых позволяет измерить координаты наземных пунктов наблюдений. Сравнение результатов измерений разных лет показывает относительное перемещение пунктов, то есть деформацию в зоне разлома, которая может сразу сниматься движением по нему, а может накапливаться и по прошествии многих лет реализоваться сильным землетрясением.

    Косвенными признаками активности разломов являются расположенные вдоль них цепочки эпицентров землетрясений, вулканов, термальных источников. О поведении разлома на глубине удается судить по результатам сейсмопрофилирования, показывающего смещения поверхностей глубинных слоев, отражающих и преломляющих сейсмические волны. На характер подвижек по разлому могут указывать особенности происходивших вдоль него землетрясений. Совместное применение перечисленных методов выявляет сложную картину жизни разлома с изменениями его параметров вдоль разлома и на глубину, а также с временными вариациями их проявлений.

    ТЕКТОНИЧЕСКАЯ ПОЗИЦИЯ И ГЕОДИНАМИЧЕСКОЕ ЗНАЧЕНИЕ ЖИВЫХ РАЗЛОМОВ

    Большое значение, которое имеют живые разломы прежде всего для оценки сейсмической опасности, побудило Международную комиссию по литосфере инициировать в 1989 году проект «Карта крупных активных разломов мира». Этот проект, послуживший вкладом Международной программы «Литосфера» в объявленное ООН десятилетие уменьшения опасности природных бедствий, возглавлял автор настоящей статьи, проект объединил усилия 70 ученых из 50 стран. Сейчас он близок к завершению. Созданы компьютерные базы данных и карты крупнейших активных разломов континентов, а в наиболее подвижных и жизненно важных регионах выполнены и более детальные исследования. Их результаты использованы при составлении карт сейсмической опасности различных регионов.

    Проведенные в рамках этого проекта исследования выявили общие закономерности активного разломообразования. Живые разломы распределены на поверхности Земли неравномерно. Большая их часть находится в подвижных поясах, отличающихся контрастностью рельефа и высокой сейсмичностью. Эти пояса разграничивают крупные литосферные плиты, охватывающие земную кору и самую верхнюю часть мантии. В зависимости от направлений относительного перемещения плит в таких поясах могут происходить их раздвигание (рифтовые системы на срединно-океанических хребтах), их сближение (островные дуги, активные континентальные окраины и области коллизии, то есть столкновения континентальных частей плит) или сдвиг вдоль их границ (например, между Анатолийской и Евразийской плитами по Северо-Анатолийской зоне разломов). На территории Евразии и Африки расположены два крупнейших подвижных мегапояса: Притихоокеанский и Альпийско-Гималайский. Первый приурочен к границе Евразийской плиты с Тихоокеанской и на севере с Северо-Американской плитами, а второй охватывает область сближения Евразийской плиты с плитами южного ряда: Австралийской, Индийской, Аравийской и Африканской.

    Рис. 2. Карта активных разломов Евразии и Африки

    Подвижки по активным разломам подвижных поясов отражают направления современного относительного перемещения плит. Вместе с тем они охватывают не только границы плит, но и обширные смежные области шириной в сотни, а в Центральной Азии более 1000 км (рис. 2), разделяя микроплиты и блоки земной коры, расположенные между главными плитами. Их рисунок напоминает картину ледохода на реке, когда между крупными льдинами возникает крошево более мелких кусков льда. Перемещения между блоками иногда лишь немногим уступают перемещениям на границах главных плит, хотя в целом убывают с удалением от них. Так, средние скорости сдвига на западном и северо-восточном флангах Аравийской плиты достигают 7-10 мм/год, а по расположенным севернее крупнейшим межблоковым разломам Малого и Большого Кавказа близки к 5 мм/год. На флангах Индийской плиты скорости современных движений составляют 10-30 мм/год, а по крупнейшим разломам более северных и восточных областей Альпийско-Гималайского пояса – в Южном Тибете, на его северной и восточной границах, в Тянь-Шане и Монголии – они местами достигают и иногда превосходят 10 мм/год. Таким образом, распределение смещений внутри пояса оказывается сложным и неравномерным. Давление, первоначально возникшее на границе сближающихся главных плит, вызвало последовательное дробление все более удаленных от нее участков, и сейчас все они вовлечены в относительное перемещение. При этом большинство крупных активных разломов Евразии имеют сдвиговую компоненту движений, которая равна или чаще больше вертикальной компоненты. Сдвигами являются почти все разломы со скоростями движений более 10 мм/год. Обусловлено это тем, что горизонтальный сдвиг – наиболее энергетически экономная форма перемещения континентальных масс, поскольку не требует преодоления силы тяжести.

    Сложность современного развития подвижных поясов и относительного перемещения плит не исчерпывается подвижками по разломам. Так, вдоль Северо-Анатолийской зоны разломов между Евразийской и Анатолийской плитами скорость современного сдвига составляет, по геологическим и космогеодезическим данным, 13-20 мм/год, но, по тем же космогеодезическим данным, общая величина относительного перемещения этих плит достигает 30 мм/год, прирастая за счет деформации приразломной полосы шириной более 100 км. Иначе говоря, плиты (по крайней мере, в тех их частях, где перемещения особенно велики и контрастны) ведут себя не как бетонные монолиты, а как куски вара, способные медленно течь в результате давления друг на друга. Такое крупномасштабное течение особенно ярко выражено на Тибете, который под давлением Индийской плиты, движущейся к северо-востоку, укорачивается в поперечном направлении, вздымается и одновременно выдавливается на восток и юго-восток.

    Совместный анализ геологических и геофизических данных о поведении активных разломов на глубине и современных деформациях глубинных горизонтов литосферы показал, что в разрезе литосферы подвижных поясов наблюдается тектоническая расслоенность – столь же сложное зонально-ячеистое распределение деформаций и смещений, как и на поверхности Земли. Разные горизонты литосферы могут деформироваться в разной степени, смещаться по зонам нарушений разных направлений и даже местами двигаться с разными скоростями. Литосферная плита в подвижном поясе более напоминает деформированный с боков торт «наполеон», чем монолитную пластину. В слабо подвижных равнинных областях потенциальные возможности тектонического расслоения сохраняются, но реализуются в существенно меньшей степени.

    АКТИВНЫЕ РАЗЛОМЫ И ЖИЗНЬ ЛЮДЕЙ

    Треть человечества живет в сейсмически активных областях, где время от времени случаются разрушительные и изредка катастрофические землетрясения и где сосредоточено большинство крупных живых разломов. Для обеспечения безопасности населения, планирования землепользования, подходящих мест для возведения тех или иных сооружений и средств их защиты важное, а возможно, и решающее значение имеет не столько предупреждение отдельного сейсмического события в конкретном месте и в конкретное время, сколько определение уровня сейсмических воздействий от возможных будущих сильных землетрясений. Чтобы рассчитать этот уровень, надо знать места, максимальную возможную энергию (магнитуду Mmax) и повторяемость будущих землетрясений. Места и максимальная магнитуда определяют комплексным анализом параметров уже случившихся в регионе землетрясений и активных разломов. Связь этих явлений очевидна, поскольку подавляющее большинство землетрясений земной коры приурочено к зонам живых разломов.

    Изучение живых разломов дает возможность, во-первых, уточнить сейсмические характеристики региона, по которым определяются места, Mmax и повторяемость будущих землетрясений максимальной магнитуды, и, во-вторых, получить эти характеристики независимым путем. Важность активных разломов как источника сейсмологической информации обусловлена тем, что для оценки Mmax нужно знать сейсмическую историю региона за максимально длительный срок, в течение которого случались землетрясения больших магнитуд и проявилась их повторяемость. Но инструментальная регистрация землетрясений проводится немногим более 100 лет, а исторические сведения о более ранних сейсмических событиях прерывисты и во многих местах отсутствуют. Изучение живых разломов восполняет этот пробел.

    На рис. 3 представлен разрез канавы, прорытой поперек зоны активного Казерунского разлома в горах Загроса (Иран). Видно, что зона имеет сложное строение. Отдельные разрывы нарушают некие слои речных наносов, но перекрыты другими слоями, то есть возникли после первых и до вторых. По крупнейшему разрыву более молодые слои смещены по вертикали на меньшее расстояние и менее деформированы, чем более древние. Следовательно, было несколько импульсов движений – сильных землетрясений. По соотношению отдельных разрывов со смещенными и перекрывающими слоями, возраст которых, как удалось установить, охватывает последние 12 тыс. лет, выявлено шесть таких землетрясений, то есть они повторялись в среднем через 2000 лет.

    Независимый способ оценки мест и Mmax землетрясений по данным об активных разломах основан, во-первых, на самом факте приуроченности большинства сильных землетрясений к таким разломам и, во-вторых, на их длине и амплитудах выявленных сейсмогенных подвижек. Хотя очаги современных сильных землетрясений могут располагаться в любой части зоны живого разлома, выявлены места, где они возникают особенно часто. Это пересечения и сочленения разнонаправленных разломов и участки, где кулисно расположенные сегменты разломов надстраивают друг друга. Именно там непрерывное движение по разлому затормаживается и происходит накопление упругой деформации, приводящее к сейсмогенерирующему срыву.

    Использование для оценки Mmax данных о длине разлома L и величине сейсмогенных подвижек D основано на уравнениях регрессии типа M = a + b lg L и M = c + + d lg D, где a, b, c и d – коэффициенты, эмпирически определенные по данным о подвижках при современных землетрясениях, а M – их амплитуды. При разделении разлома на отдельные сегменты, развивающиеся сейсмически независимо, L – не общая длина разлома, а длина сегмента. Изучение палеоземлетрясений показывает, что границы сегментов устойчивы во времени. Следует иметь в виду разную сейсмическую активность живых разломов подвижных поясов и равнинных областей, а также направления движений по разломам и возможный вклад медленных движений в общее смещение, вводя на это поправку в соотношения L, D и Mmax . Внеся такие поправки в величины смещений, установленные в канаве (см. рис. 3), мы определили магнитуды вызвавших их палеоземлетрясений величинами 7-7,3, то есть оценили эти землетрясения как катастрофические.

    Влияние активных разломов на жизнь людей не исчерпывается сейсмическими воздействиями, причем это влияние может быть не только отрицательным, но и положительным. На рис. 4 представлена карта активных разломов Ближнего Востока, на которую нанесены пункты, где археологи обнаружили следы зарождения древнейшего земледелия – важнейшего шага в истории человечества, называемого неолитической революцией и ознаменовавшего переход к производящей экономике. Древнейшее земледелие возникло в так называемом плодородном полумесяце, протягивающемся дугой от Израиля через Ливан, Сирию, Южную Турцию к пограничной полосе между Ираком и Ираном.

    Рис. 4. Живые разломы и места находок следов древнейшего земледелия на Ближнем Востоке. Типы разломов те же, что на рис. 2. Синие точки — места находок следов древнейшего земледелияВсякий минимально знакомый с земледелием знает, что для него нужны: 1) простейшая инфраструктура (постоянное жилище, коммуникации); 2) средства для возделывания земли и хранения урожая; 3) благоприятные климатические условия; 4) хорошая почва на подходящих землях; 5) полив; 6) посевной материал. Первые два условия были подготовлены социально-техническим развитием населения региона на стадии собирательства диких растений. Улучшение климатических условий было связано с окончанием ледниковой эпохи. А три последних условия обеспечили… живые разломы. И это видно уже из того, что почти все пункты со следами древнейшего земледелия находятся в зонах живых разломов и связанных с ними структур (см. рис. 4). Именно их активностью в течение последних 1-3 млн лет обусловлено сочетание горных хребтов с долинами и предгорными равнинами, покрытыми речными наносами, где и сейчас почвы наиболее благоприятны для земледелия. Хребты задерживали средиземноморские влажные тучи, обеспечивая выпадение дождей. С них в долины и на равнины сбегали мелкие речки, орошая почву. Вдоль живых разломов тогда, как и сейчас, выходили родники пресной воды, обеспечивая потенциальных земледельцев водой в засушливые сезоны и годы. И это не все: раздробленные породы в зонах разломов создавали пониженные прямые участки местности, которые использовались реками или представляли удобные места для прокладки троп и караванных путей, то есть становились трассами древнейших коммуникаций. Так было в прошлом на Ближнем Востоке, и так же, кстати, было в Древней Руси. Вероятно, именно с этим проявлением живых разломов связано то, что к них и особенно к их пересечениям приурочено большинство городов Русской равнины, возникших до 1300 года и достигших сейчас численности населения не менее 100 тыс.

    Однако вернемся к последней предпосылке древнейшего земледелия – наличию посевного материала. Великий русский ботаник и генетик академик Н.И. Вавилов установил, что ближневосточный центр зарождения земледелия попадает в юго-западно-азиатский ареал распространения диких предков культурных растений, в котором произрастали пшеница-однозернянка, эммер, ячмень, горох, чечевица в сочетании с миндалем и фисташкой как потенциальными источниками масла. Вместе с тем Н.И. Вавилов отметил в этом ареале участки, где указанные растения встречались совместно, давая большое количество разновидностей, что позволяло первым земледельцам выбрать формы наиболее продуктивные и пригодные для воспроизведения. Такие участки, как оказалось, приходятся на зоны активных разломов. В чем дело?

    Н.Н. Воронцов и Е.А. Ляпунова обнаружили в высоко сейсмически активной зоне разломов на границе Памира и Тянь-Шаня у Ellobius talpinus, одного из надвидов слепушей (мелкие грызуны), характерные изменения набора хромосом – так называемые робертсоновские транслокации. Подобные мутагенные изменения были выявлены у слепушей в зонах живых разломов Болгарии, Югославии, Сирии, Ливана и Израиля, а у других мелких грызунов, в частности полевок и домовой мыши, – также в активных зонах Апеннин, Альп, Пиренеев, Динарид, Малого Кавказа, Тянь-Шаня, Алтая, Байкала, Курил, Японии и запада США. Можно полагать (и сейчас появились тому доказательства), что подобные мутагенные воздействия оказывали активные разломы и на диких предков культурных растений, обусловив их разнообразие, использованное первыми земледельцами.

    Причиной мутагенных изменений могли быть химически своеобразные эмонации активных зон. В ходе аэро-космо-геологического эксперимента «Тянь-Шань-Интеркосмос-88» нам удалось установить выделение в зонах живых разломов радона и некоторых тяжелых металлов (рис. 5). Особенно показательным было изучение однотипных полей люцерны в зоне Файзабадского разлома на южном фланге Тянь-Шаня и вне ее. В зоне разлома люцерна оказалась обогащенной в три раза и более железом, марганцем, мышьяком, цирконом, ниобием и другими тяжелыми металлами.

    Итак, наша планета до сих пор сохраняет тектоническую активность, наиболее наглядно проявляющуюся в динамике живых разломов. Их большая часть и почти все разломы со скоростями движений $?1 мм/год сосредоточены в подвижных поясах. Однако и равнинные территории типа Восточно-Европейской и Сибирской платформ также нарушены живыми разломами, заметное дыхание которых дополняется лишь ничтожными направленными движениями. Исключение среди «вялых» регионов составляют Фенноскандия и другие подобные области, 10-12 тыс. лет назад покрывшиеся мощным ледником. Здесь снятие ледовой нагрузки привело к общему воздыманию и некоторому ускорению подвижек по разломам.

    Живые разломы оказывали и продолжают оказывать влияние на жизнь и деятельность людей. Это влияние бывало и отрицательным и положительным. Живые разломы были и остаются источником природных бедствий, иногда катастрофических. Таковы прежде всего сильные землетрясения, а также извержения связанных с разломами вулканов, аварии скважин и трубопроводов, выделение радиоактивных элементов и соединений тяжелых металлов, некоторые вредные для здоровья геофизические аномалии, в частности электромагнитные. С вертикальными смещениями по разломам связаны изменения береговых линий, нарушающие эксплуатацию портовых и других прибрежных сооружений, усиление эрозии воздымающихся территорий, концентрация оползней и обвалов вдоль разломных уступов. Особенно опасны, хотя порой и незаметны при жизни одного поколения, многолетние эпохи усиления активности, проявляющиеся более частыми сильными землетрясениями. Крупнейшие социально-политические кризисы в истории Средиземноморья и Ближнего Востока (XIII-XI вв. до н.э., IV-VII вв. н.э. и вторая половина XVI-XIX столетие) совпадают с эпохами ухудшения климата и частых сильных землетрясений.

    Вместе с тем активность разломов определяла создание ландшафтов, благоприятствовавших становлению и развитию земледелия. Зоны разломов были источниками водоснабжения и естественными трассами речных и сухопутных коммуникаций. Двойственно воздействие разломов на живые организмы. С одной стороны, их мутагенный эффект обеспечил разнообразие диких предков культурных растений, позволившее древним земледельцам выбрать формы, наиболее продуктивные и пригодные для воспроизводства. С другой стороны, даже более слабые воздействия живых разломов равнинных территорий могут оказывать патогенное влияние на человека и биоту. Так, в зонах молодых разломов района Санкт-Петербурга работами Е.К. Мельникова, В.А. Рудника и Ю.И. Мусийчука выявлены повышенные выделения радона, увеличение числа раковых заболеваний и болезненные изменения деревьев, причем разломы влияют больше, чем промышленное загрязнение.

    Мы не можем изменить активность живых разломов и связанных с ней землетрясений и других опасных явлений, но можем и обязаны уменьшить их отрицательные воздействия путем разумного планирования строительства и землепользования и обеспечения защитных мероприятий. Следует использовать и положительные эффекты активного разломообразования как источников подземных вод, в частности минеральных, а также мест организации заповедников и национальных парков.

    Владимир Георгиевич Трифонов, доктор геолого-минералогических наук, профессор, лауреат Государственной премии, действительный член РАЕН, руководит Лабораторией неотектоники и современной геодинамики в Геологическом институте РАН, возглавляет проект «Карта крупных активных разломов мира» Международной программы «Литосфера». Область научных интересов – общая геотектоника, неотектоника, современная геодинамика, сейсмотектоника, геоэкология, влияние геодинамических процессов на историю. Автор 220 научных работ, в том числе 14 монографий.

    Здравствуйте дорогой читатель. Никогда ранее я не думал, что мне придётся писать эти строки. Довольно долго не решался записать всё то, что мне суждено было открыть, если это вообще так можно назвать. До сих пор порой задумываюсь, а не сошел ли я с ума.

    Как то вечером ко мне подошла дочь с просьбой показать на карте где и какой океан находится на нашей планете, а так как печатной физической карты мира у меня дома нет, то я открыл на компьютере электронную карту Google, переключил её в режим вида со спутника и начал ей потихоньку всё объяснять. Когда от Тихого океана дошел до Атлантического и приблизил поближе, чтобы показать дочери получше, то меня словно током ударило и я вдруг увидел то что видит любой человек на нашей планете, но совершенно другими глазами. Как и все я до этого момента не понимал что такое же вижу на карте, а тут у меня словно глаза открылись. Но всё это эмоции, а из эмоций щи не сваришь. Так что давайте попробуем вместе увидеть что же такое мне открылось карте Google, а открылось ни много ни мало - след столкновения нашей Земли Матушки с неведомым небесным телом, приведшего к тому, что принято называть Великим Потом.


    Посмотрите внимательно в левый нижний угол фотографии и задумайтесь: вам это ничего не напоминает?Не знаю как вам, а мне это напоминает четкий след от удара некого округлого небесного тела о поверхность нашей планеты. Причём удар был перед материком Южная Америка и Антарктида, которые от удара теперь слегка вогнуты в сторону направления удара и разделяются в этом месте проливом, носящим имя пролив Дрейка, пирата, который якобы и открыл этот пролив в прошлом.

    На самом же деле этот пролив представляет собой рытвину, оставленную в момент удара и заканчивающуюся округлым «пятном контакта» небесного тела с поверхностью нашей планеты. Давайте посмотрим на это «пятно контакта» поближе и повнимательнее.

    Приблизив, мы видим округлое пятно, имеющее вогнутую поверхность и заканчивающееся справа, то есть со стороны по направлению удара, характерным холмом с практически отвесной гранью, имеющей опять же характерные возвышения, которые выходят на поверхность мирового океана в виде островов. Для того чтобы лучше понять характер образования этого «пятна контакта» вы можете проделать такой же опыт, какой проделал я. Для опыта необходима мокрая песчаная поверхность. Прекрасно подойдёт поверхность песка на берегу реки или моря. Во время опыта необходимо произвести плавное движение рукой, во время которого вы ведете рукой над песком, затем касаетесь пальцем песка и, не прекращая движение руки, оказываете на него давление, тем самым сгребая некоторое количество песка пальцем и затем через некоторое время производите отрыв своего пальца от поверхности песка. Проделали? А теперь посмотрите на результат данного несложного опыта и вы увидите картину, полностью аналогичную той, что представлена на фото ниже.

    Есть ещё один забавный нюанс. По заявлениям исследователей, северный полюс нашей планеты в прошлом сместился примерно на две тысячи километров. Если же измерить протяженность так называемой рытвины на дне океана в проливе Дрейка и заканчивающейся «пятном контакта», то она так же примерно соответствует двум тысячам километров. На фото я сделал замер средствами программы Google Maps. Причем исследователи не могут ответить на вопрос что послужило причиной сдвига полюса. Я не берусь утверждать с вероятностью в 100 %, но всё же стоит задуматься над вопросом: а не эта ли катастрофа послужила причиной смещения полюсов планеты Земля на эти самые две тысячи километров?

    Теперь давайте зададимся вопросом: что же произошло, после того как небесное тело ударило по касательной в планету и вновь ушло в просторы космоса? Вы спросите: почему по касательной и почему обязательно ушло, а не пробило поверхность и погрузилось в недра планеты? Тут всё тоже очень просто объясняется. Не стоит забывать о направлении вращения нашей планеты. Именно то стечение обстоятельств, что небесное тело дарило по ходу вращения нашей планеты спасло её от разрушения и позволило небесному телу так сказать соскользнуть и уйти прочь, а не зарыться в недра планеты. Не меньшая удача была в том, что удар пришелся в океан перед материком, а не в сам материк, так как воды океана несколько сдемпфировали удар и сыграли роль своеобразной смазки при соприкосновении небесных тел, но этот факт имел и обратную сторону медали - воды океана сыграли и свою разрушительную роль уже после отрыва тела и ухода его в космос.

    Теперь давайте посмотрим что же произошло далее. Думаю, никому не надо доказывать, что следствием удара, приведшего к образованию пролива Дрейка, послужило образование огромной многокилометровой волны, которая на огромной скорости понеслась вперёд, сметая всё на своём пути. Давайте проследим путь этой волны.

    Волна пересекла Атлантический океан и первой преградой на её пути встала южная оконечность Африки, правда она пострадала относительно немного, та как волна задела её своим краем и слегка повернула к югу, где налетела на Австралию. А вот Австралии повезло гораздо меньше. Она приняла на себя удар волны и была практически смыта, что очень хорошо видно на карте.

    Далее волна пересекла Тихий океан и прошла между Америками, опять же своим краем зацепив Северную Америку. Последствия этого мы видим и на карте и в фильмах Склярова, который весьма живописно расписал последствия Великого Потопа в Северной Америке. Если кто не смотрел или уже подзабыл, то может пересмотреть эти фильмы, благо они давно уже выложены в свободный доступ в сети Интернет. Это весьма познавательные фильмы, правда далеко не всё в них стоит воспринимать всерьёз.

    Далее волна второй раз пересекла Атлантический океан и всей своей массой на полном ходу ударила в северную оконечность Африки, сметая и смывая всё на своём пути. Это так же прекрасно видно на карте. С моей точки зрения таким странным расположением пустынь на поверхности нашей планеты мы обязаны вовсе не причудам климата и не безрассудной деятельности человека, а именно разрушительному и безпощадному воздействию волны во время Великого потопа, которая не только сметала всё на своём пути, но и в буквальном смысле этого слова всё смывала, включая не только постройки и растительность, но и плодородный слой почвы на поверхности материков нашей планеты.

    После Африки волна прокатилась по Азии и вновь пересекла Тихий океан и, пройдя в разрез между нашим материком и Северной Америкой ушла на северный полюс через Гренландию. Достигнув северного полюса нашей планеты волна сама себя погасила, т. к. она исчерпала и свою мощь, последовательно тормозясь о материки, на которые она налетала и тем что на северном полюсе в конце концов догнала сама себя.

    После этого пошел откат воды уже потухшей волны со стороны Северного полюса на юг. Часть воды прошла через наш материк. Именно этим можно объяснить объяснить до сих пор затопленную северную оконечность нашего материка и забросанный землёй Финский залив и города западной Европы, в том числе наш Петроград и Москву, погребённые под многометровым слоем земли, которую принесли, отхлынувшего с Северного полюса.

    Карта тектонических плит и разломов Земной коры

    Если был удар небесного тела, то вполне разумно поискать его последствия в толще Земной коры. Ведь удар такой силы просто не мог не оставить никаких следов. Давайте обратимся к карте тектонических плит и разломов Земной коры.

    Что же мы там видим на этой карте? На карте четко виден тектонический разлом на месте не только следа, оставленного небесным телом, но и вокруг так называемого «пятна контакта» на месте отрыва небесного тела от поверхности Земли. И эти разломы лишний раз подтверждают правильность моих выводов об ударе некого небесного тела. И удар был такой силы, что не только снёс перешеек между Южной Америкой и Антарктидой, но и привёл к образованию тектонического разлома в Земной коре в данном месте.

    Странности траектории движения волны по поверхности планеты

    Думаю стоит поговорить ещё об одном аспекте движения волны, а именно о её непрямолинейности и неожиданных отклонениях то в одну, то в другую сторону. Нас всех с детства приучили считать, что мы проживаем на планете, которая имеет форму шара, который слегка сплюснут с полюсов.

    Я довольно долго и сам придерживался такого же мнения. И каково же было моё удивление, когда в 2012 году мне попались результаты исследования Европейского космического агентства ESA с использованием данных, полученных аппаратом GOCE (Gravity field and steady-state Ocean Circulation Explorer — спутник для исследования гравитационного поля и постоянных океанических течений).

    Ниже я привожу несколько фотографий настоящей формы нашей планеты. Причём стоит учесть тот факт, что это форма самой планеты без учета находящихся на её поверхности вод, образующих мировой океан. Вы можете задать вполне законный вопрос: какое отношение эти фотографии имеют к обсуждаемой здесь теме? С моей точки зрения самое что ни на есть прямое. Ведь мало того, что волна движется по поверхности небесного тела, имеющего неправильную форму, но на её движение оказывает удары фронта волны.

    Какими бы ни были циклопическими размеры волны, но сбрасывать со счетов эти факторы нельзя, ведь то что мы считаем прямой линией на поверхности глобуса, имеющего форму правильного шара, на деле оказывается далёкой от прямолинейной траектории и наоборот - то что в реальности является прямолинейной траекторией на поверхности неправильной формы на глобусе превратится в замысловатую кривую.

    И это мы ещё не рассматривали тот факт, что при движении по поверхности планеты, волна многократно встречала на своём пути различные препятствия в виде материков. И если вернуться к предполагаемой траектории движения волны по поверхности нашей планеты, то можно заметить, что и Африку в первый раз и Австралию она задевала своей периферийной частью, а не всем фронтом. Это не могло не влиять не только на саму траекторию движения, но и на рост фронта волны, который каждый раз при встрече с препятствием частично обрывался и волне приходилось начинать расти заново. А если рассмотреть момент её прохождения между двумя Америками, то нельзя не заметить тот факт, что при этом фронт волны не только в очередной раз был усечен, но и часть волны за счет переотражения повернула на юг и смыла побережье Южной Америки.

    Примерное время катастрофы

    Теперь попробуем выяснить когда же произошла эта катастрофа. Для этого можно было бы снарядить экспедицию на место катастрофы, детально его обследовать, взять всевозможные пробы грунта, пород и пытаться их исследовать в лабораториях, затем проследовать по маршруту движения Великого потопа и вновь проделать ту же работу. Но всё это стоило бы громадных денег, растянулось бы на долгие, долгие годы и совсем не обязательно, что на проведение данных работ хватило бы всей моей жизни.

    Но так ли всё это необходимо и нельзя ли обойтись хотя бы пока, на первых порах без столь дорогостоящих и ресурсоёмких мероприятий? Я считаю, что на данном этапе для установления примерного времени катастрофы мы с вами вполне сможем обойтись информацией, добытой ранее и находящейся сейчас в открытых источниках, как мы уже сделали при рассмотрении планетарной катастрофы, приведшей к Великому потопу.

    Для этого нам следует обратимся к физическим картам мира различных веков и установить когда же на них появился пролив Дрейка. Ведь ранее мы установили, что именно пролив Дрейка образовался в результате и на месте данной планетарной катастрофы.

    Ниже представлены физические карты, которые я смог найти в открытом доступе и подлинность которых не вызывает особого недоверия.

    Вот карта Мира, датируемая 1570 годом от Рождества Христова

    Как мы видим, на этой карте пролива Дрейка нет и Южная Америка всё ещё соединяется с Антарктидой. А это значит, что в шестнадцатом веке катастрофы ещё не было.

    Давайте возьмём карту начала семнадцатого века и проверим не появились ли пролив Дрейка и своеобразные очертания Южной Америки и Антарктиды на карте в семнадцатом веке. Ведь не могли же мореплаватели не заметить такого изменения в ландшафте планеты.

    Вот карта, датируемая началом семнадцатого века. К сожалению более точной датировки, как в случае с первой картой, у меня нет. На ресурсе, где я нашел эту карту, стояла именно такая датировка «начало семнадцатого века». Но в данном случае это не носит принципиального характера.

    Дело в том, что и на этой карте и Южная Америка и Антарктида и перемычка между ними находятся на своём месте, а следовательно либо катастрофа ещё не случилась, либо картограф не знал о произошедшем, правда в это верится с трудом, зная масштаб катастрофы и все те последствия, к которым она привела.

    Вот очередная карта. На этот раз датировка карты более точная. Она датируется так же семнадцатым веком - это 1630 год от Рождества Христова.

    И что же мы видим на этой карте? Хоть очертания материков прорисованы на ней и не столь хорошо, как в предыдущей, но отчетливо видно, что пролива в современном его виде на карте нет.

    Ну что ж, видимо и в данном случае повторяется картина, описанная при рассмотрении предыдущей карты. Продолжаем движение по временной шкале в сторону наших дней и в очередной раз берём карту более свежую, чем предыдущая.

    На этот раз физической карты мира я не нашел. Нашел карту Северной и Южной Америк, кроме того на ней не отображена Антарктида вообще. Но это ведь не столь важно. Ведь очертания южной оконечности Южной Америки мы помним по предыдущим картам и любые в них изменения то мы сможем заметить и без Антарктиды. Зато с датировкой карты в этот раз полный порядок - она датирована самым концом семнадцатого века, а именно 1686 годом от Рождества Христова.

    Давайте посмотрим на Южную Америку и сверим её очертания с тем, что видели на предыдущей карте.

    На этой карте мы видим наконец-то не набившие уже оскомину допотопные очертания Южной Америки и перешеек, соединяющий Южную Америку с Антарктидой на месте современного и привычного пролива Дрейка, а самую что ни на есть привычную современную Южную Америку с изогнутой в сторону «пятна контакта» южной оконечностью.

    Какие выводы можно сделать из всего изложенного выше? Есть два довольно простых и очевидных вывода:



      1. Если допустить, что картографы действительно составляли карты в те времена, которыми датированы карты, то катастрофа произошла в пятидесятилетний промежуток между 1630 и 1686 годами.





      1. Если допустить, что картографы для составления своих карт использовали древние карты и лишь копировали их и выдавали за свои, то можно утверждать лишь то, что катастрофа произошла ранее 1570 года от рождества Христова, а в семнадцатом веке при повторном заселении Земли были установлены неточности уже имеющихся карт и в них были внесены уточнения для приведения их в соответствие с реальным ландшафтом планеты.



    Какой из этих выводов правильный, а какой ложный я, к моему великому сожалению, судить не могу, т. к. для этого имеющейся информации пока явно недостаточно.

    Подтверждение катастрофы

    Где же можно найти подтверждение факта катастрофы, кроме физических карт, о которых мы говорили выше. Боюсь показаться неоригинальным, но ответ будет довольно прорст: во первых у нас с вами под ногами и во вторых в произведениях искусства, а именно в картинах художников. Сомневаюсь, что кто-либо из очевидцев смог бы запечатлеть саму волну, но вот последствия этой трагедии вполне себе запечатлевали. Существовало довольно большое количество художников, которые писали картины, на которых отражалась картина жуткой разрухи, которая царила в семнадцатом и восемнадцатом веках на месте Египта, современной западной Европы и Руси Матушки. Вот только предусмотрительно нам объявили, что эти художники писали не с натуры, а отображали на свотх полотнах так называемый воображаемый ими мир. Приведу работы лишь нескольких довольно ярких представителей сего жанра:

    Вот как выглядели ставшие уже нам привычные древности Египта, до того как их в буквальном смысле этого слова откопали из под толстого слоя песка.

    А что же в это время было в Европе? Нам помогут понять Giovanni Battista Piranesi, Hubert Robert и Charles-Louis Clerisseau.

    Но это далеко не все факты, что можно привести в подтверждение катастрофы и которые ещё только предстоит мне систематизировать и описать. Есть ещё засыпанные землёй на несколько метров города на Руси Матушке, есть Финский залив, который так же засыпан землёй и стал по настоящему судоходным лишь в конце девятнадцатого века, когда по его дну был прокопан первый в мире морской канал. Есть солёные пески Москва-реки, морские раковины и чертовы пальцы, которые я ещё пацаном откапывал в лесных песках в Брянской области. Да и сам Брянск, который по официальной исторической легенде получил своё название от дебрей, якобы на месте которых он стоит, правда дебрями на Брянщине и не пахнет, но это предмет отдельного разговора и Бог даст в будущем я опубликую свои мысли на эту тему. Есть залежи костей и туш мамонтов, мясом которых ещё в конце двадцатого века в Сибири кормили собак. Всё это я более подробно рассмотрю в следующей части этой статьи.

    А пока я обращаюсь ко всем читателям, которые потратили своё время и силы и дочитали статью до конца. Не оставайтесь ранодушны -- выссказывайте любые критические замечания, указывайте на неточности и ошибки в моих рассуждениях. Задавайте любые вопросы -- я отвечу на них обязательно!